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Variance of a single community-weighted mean decomposition rate (KM) 

We begin with the same distributional assumption as the mixed-model regression (Model 1), namely that the 

decomposition rates of the species in this study are drawn from a normally distributed statistical population 

consisting of a large set of species in which each species has a particular monoculture decomposition rate, ki; 

i.e. k ~ N (,). The population mean (μ) and standard deviation () of decomposition rates, estimated in 

the mixed-model monoculture regression, were –2.49×10
-3

 and 6.80×10
–4

, respectively. We randomly 

choose S (here, 6) species from this statistical population and then construct a subset M of these S species, 

consisting of a total of SM species from this larger set; the subset M represents the subset of species forming 

a particular litter mixture. We calculate a weighted mean (a “community-weighted mean”) of the resulting 

SM values of ki. In other words, let KM  piki
iM

SM

  be the community weighted mean of the mixture 

decomposition rate in the set of species belonging to a particular mixture M. Here, p = {p1,p2,…,pSM} are the 

proportions of each species in the mixture. 

A community-weighted mean (CWM) as defined here is a weighted sum of the random variables ki. The 

general formula for the variance of a weighted sum of random variables is given in equation 1 (for example, 

Freund, 1962). 
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However, in our case all of the ki come from the same distribution and so Var(ki)= 
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  and the first term on 

the RHS of equation 1 in our experiment is 
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 . Since the litter mixtures 

were formed for all possible unique combinations of each species irrespective of the decomposition rates of 

each (ki), the probability of species j being a member of the mixture is the same whether or not species i has 



already been chosen or not, and so Cov(ki, kj)=0. This would not be true in a sample of naturally occurring 

litter because the presence/absence of species can be correlated. Therefore, in our experiment: 
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Covariances 

The different mixtures having the same total number of species formed different, but overlapping pools of 

these subsets. For instance, given a set of 3 species (species 1, 2, 3), one can form a total of three different 

subsets (i.e. mixed-species litters) of two species {(1,2), (1,3), (2,3)} and calculate three different CWM 

(K12, K13, K23). Each CWM is a new random variable. However, each pair of subsets in this example shares 

one species in common and this will generate a positive covariance between each pair of CWM. The general 

formula for the covariance between two random variables that are each weighted sums (i.e. CWM) is given 

in equation 2 (e.g. Freund, 1962). 
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Eqn 2. 

 

The first term on the RHS of equation 2 follows from the fact that the covariance of a random variable with 

itself is the variance of this random variable, summed over all species that are present in both mixtures M1 

and M2. The second term on the RHS sums over all species that are not present in both mixtures M1 and M2. 

For instance, using the above CWM values, 

Cov(K12 ,K13)  p1
2Var(k1)  p1p3Cov(k1,k3)  p2 p1Cov(k2 ,k1)  p2 p3Cov(k2 ,k3)  since species 1 is present in 

both mixtures, while species 2 and 3 are not present in both mixtures. Again, the covariances between the 

monoculture k values will be zero in our experiment, and so Cov(K12 ,K13)  p1
2Var(k1) . In general, if there 

are no species in common between the two mixtures, then the covariance between their CWMs will be zero. 

Every time the same species appears in two different mixtures, this generates a non-zero covariance. Given 

any pair (M1, M2) of mixtures, each containing the same total number (SM) of species, 
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)  pa

2Var(ka )
a1

C

  where C is the number of species in common between mixtures M1 and M2. 

Since the litter mixtures always had the same initial amount of litter per species, in our experiment 
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Given a total of N different mixtures, each possessing a total of SM species, we can now specify the variance-

covariance matrix, , of our N unique K values, where Cij is the number of species in common between 

mixtures i and j, and 
2

  
[here, (6.80×10

–4
)
2
] is the interspecific variance of the monoculture decomposition 

rates: 
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Clearly,  tends towards a diagonal matrix with diagonal values of 
2
/SM as the number of species in 

common in mixtures i and j decreases. As the number of species in common (Cij) increases, the strength of 

the positive covariances between the K values also increases and the differences between these K values will 

decrease. 

 

The distribution of KM values in our experiment 

Given the assumption that, in common with the mixed-model regression, the monoculture decomposition 

values (k) are approximately normally distributed, the CWM (KM) values will follow an N-dimensional 

multivariate normal distribution the covariance matrix of which is . The expected value of KM is 
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are random draws from the same interspecific population of decomposition rates and so the expected values 

of ki are simply the mean of this interspecific population, i.e. μ (here, -2.49×10
–3

). Therefore, the distribution 

of the KM values is multivariate normal with mean vector ,,…, and covariance matrix . The mvrnorm 

function in the MASS library of R generates random multivariate vectors given the mean vector and the 

covariance matrix. A single draw from this multivariate normal distribution represents a vector of CWMs for 

each unique set of mixtures having the chosen number of species and the standard deviation of these values 

quantifies the degree of variation between them. By generating a large number of independent draws from 

this multivariate normal distribution and calculating the standard deviation of the values in each independent 

vector, one can approximate the sampling distribution of these standard deviations. The vertical lines in 

Figure 1A show the 95% confidence intervals of this sampling distribution. By comparing the standard 

deviation of the actual CWM with this sampling distribution, one can estimate the probability that the 

observed standard deviation comes from this sampling distribution. This is repeated for mixtures having 2, 3 

or 5 species per mixture. This Monte Carlo procedure is implemented in the R function “simulate.mixtures” : 

 

function (mean.k, var.k, total.number.species, species.per.mixture,  

    n.sim = 20000, simulate.infinite.species.pool = T, measured.sd.k)  

{ 

# This function takes the mean and variance of the monoculture decomposition rates, as estimated 

by a mixed model regression, and calculates the covariance matrix of CWM decomposition rates of 

each possible mixture of size "species.per.mixture" given a total of "total.number.species" in 

the pool, assuming biomass-ratio hypothesis (BMRH). "n.sim" : number of independant simulations 

used to estimate the distribution of these mixture decomposition rates. 

# The test statistic is the SD of the k-values between mixtures having the save 

species.per.mixture 

# "measured.sd.k" : estimate the probability that the SD of your measured values. H0 : the 

measured values comes from the simulated distribution. H1 : the SD of the measured values is 

smaller than expected from the simulated distribution. 

if (total.number.species <= species.per.mixture)  

        stop("Error. species per mixture\n must be less than the total number of species") 



    combos <- combn(total.number.species, species.per.mixture) 

    ncombos <- dim(combos)[2] 

# Cs : covariance matrix of mixtures 

# diagonals : var.k/species.per.mixtures 

# off-diagonals : species.in.common*var.k/(species.per.mixture)^2 

    Cs <- matrix(0, ncombos, ncombos) 

    for (i in 1:ncombos)  

        { 

        for (j in i:ncombos)  

            { 

            # when i=j (i.e. a diagonal), unique.species=# species in the mixture 

            unique.species <- length(unique(c(combos[, i], combos[, j]))) 

            species.in.common <- 2 * species.per.mixture - unique.species 

            Cs[i, j] <- Cs[j, i] <- var.k * species.in.common/(species.per.mixture^2) 

            } 

        } 

    if (simulate.infinite.species.pool)  

        { 

        Cs2 <- matrix(0, ncombos, ncombos) 

        diag(Cs2) <- var.k/species.per.mixture 

        } 

    library(MASS) 

    x <- mvrnorm(n = n.sim, mu = rep(mean.k, ncombos), Sigma = Cs) 

    if (!simulate.infinite.species.pool)  

       { 

        min.K <- apply(x, 1, min) 

        max.K <- apply(x, 1, max) 

        mean.K <- apply(x, 1, mean) 

        sd.K <- apply(x, 1, sd) 

        null.prob <- sum(measured.sd.k >= sd.K)/n.sim 

        out <- list(median.min.K = median(min.K), median.max.K = median(max.K),  

            median.sd.K = median(sd.K), quantiles.sd.K = quantile(sd.K,  

            probs = c(0.025, 0.5, 0.975)), prob.SD.LE.simulation = null.prob) 

        hist(sd.K, xlab = "SD(K)", main = paste("N=", as.character(n.sim),  



            "simulations", "p=", as.character(round(null.prob, 3)))) 

        limits <- quantile(sd.K, probs = c(0.025, 0.975)) 

        lines(x = rep(limits[1], 2), y = c(0, 0.25 * length(sd.K))) 

        lines(x = rep(limits[2], 2), y = c(0, 0.25 * length(sd.K))) 

        if (!is.na(measured.sd.k))  

            lines(x = rep(measured.sd.k, 2), y = c(0, 0.25 *  

                length(sd.K)), lwd = 2) 

        } 

    if (simulate.infinite.species.pool) { 

        x.inf <- mvrnorm(n = n.sim, mu = rep(mean.k, ncombos),  

            Sigma = Cs2) 

        min.K <- apply(x, 1, min) 

        max.K <- apply(x, 1, max) 

        mean.K <- apply(x, 1, mean) 

        sd.K <- apply(x, 1, sd) 

        null.prob <- sum(measured.sd.k >= sd.K)/n.sim 

        sd.K.inf <- apply(x.inf, 1, sd) 

        out <- list(median.min.K = median(min.K), median.max.K = median(max.K),  

            median.sd.K = median(sd.K), quantiles.sd.K = quantile(sd.K,  

            probs = c(0.025, 0.5, 0.975)), median.sd.K.infinite.pool =  

            median(sd.K.inf), quantiles.sd.K.inf = quantile(sd.K.inf,  

            probs = c(0.025, 0.5, 0.975)), prob.SD.LE.simulation = null.prob) 

        par(mfrow = c(2, 1)) 

        hist(sd.K, xlab = "SD(K)", main = paste("N=", as.character(n.sim),  

            "simulations", "p=", as.character(round(null.prob, 3)))) 

        limits <- quantile(sd.K, probs = c(0.025, 0.975)) 

        lines(x = rep(limits[1], 2), y = c(0, 0.25 * length(sd.K))) 

        lines(x = rep(limits[2], 2), y = c(0, 0.25 * length(sd.K))) 

        if (!is.na(measured.sd.k))  

            lines(x = rep(measured.sd.k, 2), y = c(0, 0.25 * length(sd.K)), lwd = 2) 

            hist(sd.K.inf, xlab = "SD(K)", main = "assuming infinite species pool") 

            limits <- quantile(sd.K.inf, probs = c(0.025, 0.975)) 

            lines(x = rep(limits[1], 2), y = c(0, 0.25 * length(sd.K.inf))) 

            lines(x = rep(limits[2], 2), y = c(0, 0.25 * length(sd.K.inf))) 



        if (!is.na(measured.sd.k))  

            lines(x = rep(measured.sd.k, 2), y = c(0, 0.25 * length(sd.K)), lwd = 2) 

        par(mfrow = c(1, 1)) 

    } 

    out 

} 

 

Testing the significance of the observed decrease in the prediction errors with increasing species 

richness of the litter mixture 

Figure 1B shows the observations of the deviation (dij) between the observed and predicted (community-

weighted) decomposition rates of mixture i in the set of mixtures having a total of j=2,3,5 species. The 

alternative hypothesis is that the variability of these prediction errors decreases as the number of species in 

the mixture increases. The null hypothesis is the contrary. Given this null hypothesis that the variability of 

the prediction errors is independent of the species richness of the mixture, we can test the null hypothesis 

using a permutation test (Manly, 1997) as follows. 

1. We calculate the standard deviation (Sj) of the observed dij values between the different combinations 

of mixtures for each fixed number (j) of species. 

2. We regress Sj on j in a simple linear regression and obtain the slope that describes by how much the 

variation in the prediction errors decreases with each unit increase in species richness. 

3. We randomly permute the dij values between the three levels of species richness while maintaining 

the same number of values per level as in the original data set. 

4. We repeat steps 1–3 many (N) times. 

5. We count the number (n) of times that the slope of these permuted values is more negative than the 

observed value. 

 

The 1-tailed null probability of observing at least the observed amount of decrease in the variability of the 

prediction errors by chance, given the null hypothesis, is estimated by 1–p, where p = n/N. If p < 0.05 then 



the null hypothesis is rejected and the alternative is accepted (i.e., the values of dij decrease with increasing 

j). The R function “permute.errors” implements this permutation test : 

function (percent.error = T, n.perms = 1000)  

{ 

    datas<-read.table("/…/datas.txt", header = T) 

    datas_t_temp<-Tk_dec_2009_4[datas$type==1,]     

    datas_t<-Tk_dec_2009_4_t_temp[datas_t_temp$nb_sp!=1,] 

    if (!percent.error)  

        error.k <- 1000 * (datas_t$k_obs - datas_t$k_CWM) 

    if (percent.error)  

        error.k <- 100 * (datas_t$k_obs - datas_t$k_CWM)/ datas_t$k_obs 

    Nspecies <- datas_t$nb_sp 

    Nobs.per.Nspecies <- rep(NA, 3) 

    x <- c(2, 3, 5) 

    for (i in 1:3)  

    { 

        Nobs.per.Nspecies[i] <- length(Tk_dec_2009_4_t$nb_sp[Tk_dec_2009_4_t$nb_sp == x[i]]) 

    } 

    sd.data <- matrix(NA, nrow = 20, ncol = 3) 

    for (i in 1:3) sd.data[1:Nobs.per.Nspecies[i], i] <- error.k[Nspecies == x[i]] 

    slope.sd <- coef(lm(apply(sd.data, 2, sd, na.rm = T) ~ x[1:3]))[2] 

    perm.slopes <- rep(NA, n.perms + 1) 

    for (p in 1:n.perms) #boucle pour les permutations 

    { 

        for (i in 1:3) sd.data[1:Nobs.per.Nspecies[i], i] <- sample(error.k)[Nspecies == x[i]] 

        perm.slopes[p] <- coef(lm(apply(sd.data, 2, sd, na.rm = T) ~ x[1:3]))[2] 

    } 

    perm.slopes[n.perms + 1] <- slope.sd 

    par(mfrow = c(1, 1)) 

    hist(perm.slopes, xlab = "Slope SD~Nspecies") 

    prob <- sum(perm.slopes <= slope.sd)/n.perms 

    ci95<-1.95*sqrt(prob*(1-prob)/n.perms) 

    lines(x = c(slope.sd, slope.sd), y = c(0, 0.25 * n.perms), lwd = 2) 



    list(observed.slope = slope.sd, null.prob = prob, ci95=c(prob-ci95,prob+ci95)) 

} 

 

REFERENCES 

Freund JE. 1962. Mathematical statistics, Englewood Cliffs, NJ, Prentice-Hall. 

Manly BFJ. 1997. Randomization, Bootstrap and Monte Carlo Methods in Biology, second edition, London, 

Chapman and Hall. 


