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Thermodynamics of Clusters Selected by Control Variables. Infor-
mation is shown in Table S1.

Thermodynamic Decomposition Results. The potential energy de-
composition of the 1-ms bovine pancreatic trypsin inhibitor (BPTI)
simulation was computed using the software utilities mdrun and
g_energy of the GROMACS 4.5.5 simulation package (1) using
simulation parameters matched to the original Anton simulation,
including accounting for the ff99SB force-field parameters with
isoleucine corrections (2, 3). Three potential energy calculations
were performed for each molecular dynamics snapshot: all atoms,
only solvent, and only protein. The solvent–protein potential
energy of each snapshot was calculated as the all-atom potential
energy less the solvent-only and protein-only energies. The po-
tential energy values per snapshot were also used to calculate the
heat capacity of each cluster using equation 9 in the work by
Prabhu and Sharp (4). All thermodynamic quantities are pre-
sented in Table S2, and convergence plots of these quantities are
shown in Figs. S1 and S2.

Convergence of Potential Energies. Information is shown in Fig. S1.

Convergence of Relative Heat Capacities. Information is shown in
Fig. S2.

Estimation of Configurational Entropy. In preparation for investi-
gating the configurational entropy, we established an internal
coordinate system for BPTI based on bond lengths, bond angles,
and torsions (5–8). Because the torsions account for the soft de-
grees of freedom that are responsible for almost all of the sig-
nificant differences in motion between the clusters (bonds and
angles showed little difference between the clusters; see below),
we focused on their contribution to the configurational entropy.
Torsions associated with a symmetry rotation (e.g., phenylalanine
and tyrosine χ2 angles) were corrected to account for the sym-
metry. There are 889 torsions comprising all of the backbone, side
chain, and phase angles of the protein. We used cpptraj, a pro-
gram included with AmberTools 12 (9), to compute the value of
each torsion for all available 4.1 million snapshots of the 1-ms
BPTI simulation (10). The results for each snapshot were then
partitioned according to the conformational cluster to which it
belongs. 1D and 2D probability distribution functions (pdfs) and
the resulting mutual information between the distributions were
generated using the ACCENT software package (11). We also im-
proved the configurational entropy estimates by adding the max-
imum information spanning tree (MIST) algorithm (12, 13) to
ACCENT. The MIST algorithm, when assuming sufficient sam-
pling, yields a rigorous upper bound to the true entropy, and at
the level of pairwise correlation, it is found to yield a better esti-
mate of the true entropy than the mutual information expansion
(MIE), because MIE tends to overcompensate and subtract too
much mutual information (13).
Block permutation of data.Limited sampling can cause two variables
(e.g., i and j) that are statistically independent to seem correlated
and hence, have nonzero computed mutual information. We
corrected for such errors as follows. We applied a series of cyclic
permutations to groups of consecutive measurements (or blocks)
for variable i relative to variable j. The mutual information be-
tween the permuted variable and unpermuted variable was then
calculated for each permutation and averaged over the permuta-
tions before being subtracted from the original mutual informa-

tion of variables i and j. The blocks used for the cyclic permutations
correspond to all of the measurements in a set of frames that
starts at the transition into a cluster and ends at the transition
out of the cluster. Therefore, the frames inside each block rep-
resent a subset of the simulation, where the system remained in
a given cluster without undergoing a transition into a different
cluster. These blocks can consist of tens of microseconds or more
of simulation data. We omitted the first and last 500 ns worth of
frames around each cluster–cluster transition to minimize mem-
ory of the previous cluster at the transition.
The mutual information values from the permutations de-

scribed above were averaged, and the average was subtracted from
the mutual information associated with the original (physical)
ordering of the data. Because the permutations disrupt the corre-
lation between the two torsions without disrupting the independent
time evolution of the torsions, the resulting mutual information
is a representation of the spurious correlation that appears be-
tween sets of numerical measurements for the available sample
set. The final computed configurational entropy estimates are,
hence, conservative with respect to the total amount of corre-
lation entropy compared with similar approaches, where the data
are simply scrambled to estimate the level of spurious correlation
rather than cyclically permuted in coarse blocks as done here.
Number of histogram bins. In a preliminary study, we examined the
sensitivity of the configurational entropy estimates on the number
of histogram bins used in the ACCENT program. This analysis
used all nonphase torsion angles. The raw second-order MIST
configurational entropy estimates for each cluster varied over only
∼2.5 kcal/mol as the number of bins varied between 60 and 180,
and the estimates (after applying the cyclic permutation correc-
tions) varied over only ∼1.2 kcal/mol. Furthermore, the correla-
tion entropies (defined as the second-order MIST estimate less
the first-order MIST estimate) varied over only 0.2 kcal/mol as the
number of bins varied. Therefore, the dependency of the config-
urational entropy estimates on the number of bins is essentially
isolated to the first-order contribution. The differences between
the permutation-corrected second-order entropies of the three
clusters varied by only 0.3 kcal/mol as the number of bins varied.
Subsequently, all reported configurational entropy estimates were
done with the number of histogram bins set to 120.
Convergence of permutation-corrected second-order MIST entropy esti-
mates. Information is shown in Fig. S3.

Entropy Contribution of Bond Stretches and Angle Bends. The bond
angle–torsion coordinate system set up for the configurational
entropy calculations included 453 bond lengths not involving hy-
drogens and 890 angle bends not involving hydrogens. We used
second-order MIST to estimate the additional configurational en-
tropy associated with these degrees of freedom without using the
cyclic permutation correction. Adding the entropy contributions
of these additional variables produced, at most, a 3.0-kcal/mol
difference between cluster configurational entropies. Cyclic per-
mutation corrections are expected to further reduce the range,
making the bond and angle configurational entropies essentially
the same for all three clusters.

Equilibrium Conditional pdf as a Response Function. For a molecular
system at thermal equilibrium, let the spatial variables (atomic
coordinates) be partitioned into one subset, xc, termed the control
variables, and a second subset, xt, comprising all of the other
variables. According to probability theory, the pdf over xt condi-
tioned on the control variables xc, p(xtjxc), connects the marginal
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pdf of the control variables, p(xc), to the joint pdf over all varia-
bles, p(xt, xc), as follows:

pðxtjxcÞ ¼ pðxt; xcÞ
pðxcÞ : [S1]

Statistical thermodynamics allow these joint, marginal, and con-
ditional pdfs, respectively, to be expressed in terms of configura-
tion integrals

pðxt; xcÞ ¼ e−βEðxt;xcÞR
e−βEðxt;xcÞdxtdxc

; [S2]

where β is 1/RT,

pðxcÞ ¼
R
e−βEðxt;xcÞdxtR

e−βEðxt;xcÞdxtdxc
; [S3]

and

pðxtjxcÞ ¼ e−βEðxt;xcÞR
e−βEðxt;xcÞdxt

: [S4]

Here, E(xt,xc) signifies the potential function over all variables. If
the control variables are now manipulated by the addition of a
perturbing potential function that depends on them alone, E′(xc),
then the new equilibrium joint pdf will be given by

p′ðxt; xcÞ ¼ pðxtjxcÞp′ðxcÞ; [S5]

where p′(xc) is the new pdf over the control variables. (Note that
the conditional pdf is unchanged by the perturbation.) This re-
sult is derived by writing out the right-hand side of the latter
expression in terms of configuration integrals:

pðxtjxcÞp′ðxcÞ ¼ e−βEðxt;xcÞR  e−βEðxt;xcÞdxt

R
e−β½Eðxt;xcÞþE′ðxcÞ�dxtR

e−β½Eðxt ;xcÞþE′ðxcÞ�dxtdxc

¼ e−βEðxt ;xcÞR
e−βEðxt ;xcÞdxt

e−βE′ðxcÞ
R
e−βEðxt;xcÞdxtR

e−β½Eðxt;xcÞþE′ðxcÞ�dxtdxc

¼ e−β½Eðxt;xcÞþE′ðxcÞ�R
e−β½Eðxt;xcÞþE′ðxcÞ�dxtdxc

¼ p′ðxt; xcÞ

: [S6]

In this sense, then, the conditional pdf p(xtjxc) of the unperturbed
system represents a response function enabling one to predict
how the rest of the system will respond to a change in the pdf of
any chosen control variables. Intuitively, this finding results from
the fact that the perturbing potential depends, by assumption,
only on the control variables, and therefore, the perturbing po-
tential does not affect the energy landscape of the transducing
variables for any given values of the control variables. Instead,
the perturbing potential changes the distribution of the control
variables, and this change in distribution indirectly changes the
distribution of the transducing variables. This indirect effect is
captured by the conditional pdf. Although no real perturbation
is perfectly local, as assumed here, the approximation of locality
is expected to be good in the common situation where a small
ligand binds a large protein; therefore, many atoms of the pro-
tein are too far from the ligand to interact with it significantly.
Note that, when the conditional pdf is computed from simulation
data, it can predict the system’s response only if the modified
probability density of the control variables, p′(xc), falls within the

range of xc, where the original pdf of the control variables, p(xc),
is significantly populated. The conformational selection scenario
considered in the case of BPTI meets this criterion.

General Formalism for Entropy–Enthalpy Transduction. The standard
free energy of binding is given by ΔGo ¼ μoq − μop − μol , where μoX
(X = q, p, l) represents the standard chemical potential of the
complex, free protein, and free ligand, respectively, and each
chemical potential can be divided into a partial molar energy and
entropy: μoX ¼ EX −TSoX . (The superscript o is associated with
the entropy, because this term is affected by the standard con-
centration, C0.) We wish to partition the binding energy and
entropy and hence, the binding free energy into intrinsic and
transduced contributions. This partitioning will be accomplished
by corresponding partitionings of the energies and entropies of
both the free protein and complex. No partitioning is needed for
the free ligand, because its whole energy and entropy will be in-
corporated into the intrinsic binding thermodynamics. Below, we
derive the partitioning for the free protein; the partitioning for
the complex is not derived here, because it follows by straight-
forward analogy. For simplicity, solvent degrees of freedom are
not explicitly considered. Note that the energy changes presented
here essentially equal enthalpy changes because of the low com-
pressibility of aqueous solutions and the small energy density of
1 atm ambient pressure.
The standard chemical potential of the free protein is

μop ¼
�
Ep

�
− TSop; [S7]

where angle brackets indicate a Boltzmann average. The spatial
coordinates, x, are separated into control variables associated
with atoms local to the binding site, xc, and transducing variables,
xt, associated with more remote atoms. The potential energy
function of the whole system Ep(xc, xt) is expressed as the sum
of a binding site part that depends only on the control variables
and a transducing part that depends on the transducing variables
as well:

Epðxc; xtÞ ¼ EcðxcÞ þ Etðxc; xtÞ: [S8]

Therefore,
�
Ep

� ¼ hEcip þ hEtip; [S9]

where p subscripts are included on the angle brackets to clarify
that these averages are taken in the ensemble of the free protein.
The first average, which will contribute to the intrinsic part of the
binding energy, is left simply as

hEcip ¼
Z

pp;cðxcÞEcðxcÞdxc; [S10]

where pp,c(xc) is the pdf over the control variables in the ensem-
ble of the free protein. The second average, which will contribute
to the transduced part of the binding energy, is rewritten in terms
of the conditional probability of the transducing variables on the
control variables:

hEtip ¼
Z

ppðxc; xtÞEtðxc; xtÞdxcdxt: [S11]

Now pp(xc, xt), the pdf over all variables in the ensemble of the
free protein, is rewritten as pp(xc) p(xtjxc) to yield
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hEtip ¼
Z
pp;cðxcÞ

�Z
pðxtjxcÞEtðxc; xtÞdxt

�
dxc

¼
Z
pp;cðxcÞEtðxcÞdxc:

[S12]

Here, the energy response function of the transducing part of the
protein, EtðxcÞ, is given by the bracketed integral in the first line
and matches the corresponding expression in the text.
Now the entropy of the free protein may be written in terms of

the Gibbs–Shannon formula as

Sop ¼ R ln
�
8π2

Co

�
− R

Z
ppðxc; xtÞ ln ppðxc; xtÞdxcdxt: [S13]

The initial term on the right comes from the overall orientation
and translation of the protein in solution at standard concentra-
tion (14). Substituting pp(xc) p(xtjxc) for pp(xc, xt), splitting the log,
and gathering terms on the right, we obtain

Sop ¼ R ln
�
8π2

Co

�
− R

Z
pp;cðxcÞpðxtjxcÞ ln pp;cðxcÞdxcdxt

−  R
Z

pp;cðxcÞ
� Z

pðxtjxcÞ ln pðxtjxcÞdxt
�
dxc:

[S14]

Recognizing that
R
pðxtjxcÞdxt ¼ 1 for any xc and identifying the

quantity in brackets in the third term on the right as the entropy
response, we write

Sop ¼ R ln
�
8π2

Co

�
þ Sp;c þ Sp;t

Sp;c ¼ −R
Z

pp;cðxcÞln pp;cðxcÞdxc

Sp;t ¼ −R
Z

pp;cðxcÞStdxc:

[S15]

The first two terms on the right of the first line contribute to the
intrinsic binding entropy, and the final term contributes to the
transduced binding entropy.
For the ligand–protein complex, in addition to the existing set

of control variables, the potential function also depends on the
conformation, position, and orientation of the bound ligand, (xl,
r, ω), and the ligand’s long-ranged energetic interactions with

atoms beyond the binding site may be approximated as a small
constant Elt:

Eqðxl; r;ω; xc; xtÞ ¼ Elcðxl; r;ω; xcÞ þ Elt þ Etðxc; xtÞ: [S16]

We decompose the energy and entropy of the complex by exact
analogy with the free protein, obtaining

hElciq ¼
Z
plcðxl; r;ω; xcÞElcðxl; r;ω; xcÞdxldrdωdxc

hEtiq ¼
Z
pq;cðxcÞEtðxcÞdxc

Sq;lc ¼ −R
Z
plcðxl; r;ω; xcÞln plcðxl; r;ω; xcÞdxldrdωdxcdxt

Sq;t ¼ −R
Z
pq;cðxcÞStdxc;

[S17]

where plc(xl, r, ω, xc) is the pdf over the ligand and control vari-
ables for the bound complex and pq,c(xc) is the pdf over the
control variables for the bound complex.
The thermodynamics of binding may now be partitioned into

intrinsic and transduced parts:

ΔGo ¼ ΔGo
int þ ΔGt

ΔE ¼ ΔEint þ ΔEt

ΔSo ¼ ΔSoint þ ΔSt:
[S18]

The intrinsic components of the binding thermodynamics are
given by

ΔEint ¼ hElciq þ Elt − hEcip − hElil

ΔSoint ¼ −R ln
8π2

Co þ Sq;lc − Sp;c − Sl

ΔGo
int ¼ ΔEint −TΔSoint;

[S19]

where Sl and Ell represent, respectively, the entropy and mean
energy of the free ligand. The transduced components of the
binding thermodynamics, in turn, are given by

ΔEt ¼ hEtiq − hEtip ¼
Z h

pq;cðxcÞ− pp;cðxcÞ
i
EtðxcÞdxc

ΔSt ¼ Sq;t − Sp;t ¼
Z h

pq;cðxcÞ− pp;cðxcÞ
i
StðxcÞdxc

ΔGt ¼ ΔEt − TΔSt:

[S20]
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Fig. S1. Convergence plots of the total potential energy and its components (kilocalories per mole) plotted as a function of the percentage of available
trajectory frames. Note that much of the apparent difference in convergence stems from the fact that each cluster has a different number of frames (cluster
2 has the fewest). (Upper Left) Total potential energy of the three highest population clusters and the full trajectory. Potential energies are offset by 48,820
kcal/mol for readability. (Upper Right) Potential energy of protein considered in isolation offset by 850 kcal/mol. (Lower Left) Potential energy of solvent–
solvent interactions considered in isolation offset by 45,760 kcal/mol. (Lower Right) Protein–solvent interaction energy offset by 2,119 kcal/mol for readability.

Fig. S2. Convergence plots of the relative heat capacities computed from the BPTI trajectory as Cp = <dU2>/RT2 between the conformational clusters (kil-
ocalories per mole per Kelvin) plotted as a function of the percentage of available trajectory frames.
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Fig. S3. Convergence plots of the configurational entropy (kilocalories per mole) with (MIST-PERM) and without (MIST) cyclic permutation corrections plotted
as a function of the percentage of available trajectory frames. Note that much of the apparent difference in convergence stems from the fact that each cluster
has a different number of frames (cluster 2 has the fewest). PERM, permutation.

Table S1. Numerical values from thermodynamic decomposition,
where the cluster to which each trajectory frame belongs is
determined based on the optimal control variable for each
cluster (kilocalories per mole)

Cluster ΔG ΔE −TΔS

0 vs. 1 −0.33 1.10 −1.43
2 vs. 1 0.36 3.70 −3.34
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Table S2. Cross-cluster comparisons of energies (kilocalories per mole) and heat capacities (kilocalories per mole per
Kelvin) from thermodynamic decomposition of the BPTI trajectory

Cluster comparison ΔG ΔE −TΔS ΔEprotein ΔEsolvent-solvent ΔEsolvent-protein −TΔSconfig −TΔSsolvent ΔCp

0 vs. 1 −0.43 1.49 −1.92 25.5 18.4 −42.4 −2.75 0.83 0.04
2 vs. 1 0.52 3.74 −3.22 24.4 21.8 −42.5 −18.9 15.7 0.13
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