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Table S1.  Principle Model Definitions; from the Main Text 

P(MS) = The life-time probability of developing MS in the general population.  

[equated to the prevalence of the disease] 

P(MS│IGMS) = The conditional life-time probability of developing a MS, given that the person’s MZ-

twin has MS; adjusted to exclude the impact of twins sharing intra-uterine (IU) and 

childhood (CH) environments:      P(MS│IGMS)  =   b 

(MZMS) , (DZMS) , 

(SMS) 

= Sets of persons with a monozygotic (MZ)-twin, a dizygotic (DZ)-twin, or a sibling (S) 

who either has or will develop MS.  

(IU) , (CH) = Sets of persons who share, with an MS-proband, either the same intra-uterine (IU) or a 

similar childhood (CH) environment 

(G) , (G–) = Sets of persons who either are (G) or are not (G–) genetically-susceptible to MS. 

                                                                                                    (G+) + (G–) = (P) 

(G1) , (G2) = Two mutually exclusive subsets of (G); one with high-penetrance genotypes (G1) and 

the other with low-penetrance genotypes (G2).                          (G1) + (G2) = (G)                                                                              

(G0) , (G3) = Mutually exclusive sets of genetically-susceptible individuals who depend upon (G0) or 

don’t depend upon (G3) environmental events to get MS:         (G0) + (G3) = (G) 

(FT) , (ST) = The sets of first (FT) or second (ST) twins of an MZ-twin pair  

(Gx+) , (Gx–) = The set of persons who either possess (Gx+) or don’t possess (Gx–) the particular 

genetic characteristic (Gx).                  

(HLA+) , (HLA–) = The set of persons who either carry (HLA+) or don’t carry (HLA–) at least one HLA 

DRB1*1501 allele.      (HLA+)  =  (2HB+) + (1HB+) 

(1HB+) , (2HB+) = Sets of persons who carry one (1HB+) or two (2HB+) copies of the DRB1*1501 allele. 

(1HB–) = The set of persons who carry one copy of a non-DRB1*1501 allele  

P(1HB–, 1HB–)  =   P(HLA–)  ;        P(1HB+, 1HB–) = P(1HB+) =  P(1HB–)  

(F) , (M) = Sets consisting of either women (F) or men (M) 

a , a’ = P(MS, G) / P(G1)  =  a  ;     and:      P(MS, G) / P(G2)   =   a’ 

b , b’ = P(MS│IGMS) =  b  ;    and:      P(MS│G, IGMS)  =   b’ 

x , y, z  = P(MS│G1)  =  x  ;      P(MS│G2)  =   y   ;        and:        P(MS│G)  =   z 

zt , zs = P(MS│G, Gx+)  =  zt  ;    and:   P(MS│G, Gx–)  =  zs 

t , t’ = P(MS│Gx+, IGMS)  =  t   ;       and:       P(MS│G, Gx+, IGMS)  =  t’ 

s , s’ = P(MS│Gx–, IGMS)  =  s  ;        and:       P(MS│G, Gx–, IGMS)  =  s’ 

p = P(G1│G) 

g , g1 , g2  = P(G│MS)  =  g  ;        P(G│Gx+, MS)  = g1   ;      and:        P(G│Gx–, MS)  =  g2 

A0 , A , A1 = P(Gx+)  = A0    ;     P(Gx+│MS)  =  A   ;    and :     P(Gx+│MS, IGMS)  =   A1 

MAF, HWE = Mean allelic frequency (MAF)  ;        Hardy-Weinberg Equilibrium (HWE) 
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Table S2.  Additional Model Definitions; specifically for Propositions 

(E) , (E–) = Sets of environmental exposures that either are (E) or are not (E–) sufficient to produce MS 

(environmentally) in an individual                                                                     (see Section B) 

(E0) , (E3) = Mutually exclusive sets of environmental exposures that depend upon (E0) or don’t depend 

upon (E3) genetic susceptibility to produce MS:     (E0) + (E3) = (E)               (see Section B) 

(S+) , (S–) = Sets of persons with susceptible genetic combinations that either do (S+) or do not (S–) 

include the DRB1*1501 allele                                            (see Section B & Section E; Prop. 8) 

(P) , (P1) , (P2) , 

(P3) 

= Sets of:      all individuals in the population (P)  ;      those aged <15 years (P1)   ;  

those aged 15–45 years (P2)   ;   and those aged > 45 years (P3) 

x’, y’ = P(MS│G1, IGMS)  =  x’  ;          and:           P(MS│G2, IGMS)  =  y’ 

m  = P(MS│DZMS) / P(MS│SMS)   

m1  = P(MS│Gx+, DZMS) / P(MS│Gx+, SMS) 

m2 = P(MS│Gx–, DZMS) / P(MS│Gx–, SMS) 

q = P(G1│G, MS)  = P(G1│G, MZMS)  = P(G1│G, IGMS) 

q’ = [P(MS│G, IGMS) – P(MS│G2)] / [P(MS│G1) – P(MS│G2)]:       {q’ =  (b’ –  y) / (x –  y)} 

Gi , Gj , Gk = Individual susceptibility genotypes:    within the general population (i);                              

within the  (Gx+)-population (j);        and within the (Gx–)-population (k) 

zmin , zmax = Minimum (zmin) and maximum (zmax) of the range-estimate for (z):       {zmin  ≤   z   ≤   zmax} 

zi , zj , zk = Penetrance of the (ith), (jth), and (kth) susceptibility genotype 

σzi
2, σzj

2, σzk
2 =  Variance of the Penetrance distributions:     

 {Var(zi)  = σzi
2};     {Var(zj)  = σzj

2};     and:       {Var(zk)  = σzk
2} 

nb , nt , ns = Total number of susceptible genotypes:       in the (G) subset (nb)   ;    

in the (G, Gx+) subset (nt)   ;      and in the (G, Gx–) subset (ns). 

g01 , g02 = P(G│Gx+) = g01      ;   and:         P(G│Gx–) = g02 

R0 , R , R1 = P(Gx+│G) = R0      ;    P(Gx+│G, MS)  =  R   ;    and:        P(Gx+│MS, G, IGMS)  =  R1 

wp , wq , wpq  = normalized fitness levels of different population genotypes ;            (see Prop. 6.4; Section E) 

w = relative normalized fitness level ;       w = (wp / wq)½  >  1  ;             (see Prop. 6.4; Section E) 

λw , λm , λ = Exposure threshold in women (λw), men (λm), and the threshold difference:    (λ = λw – λm) 

u , x = Actual (u) and transformed (x) environmental exposure levels for the susceptible population 

c , d = Maximum probability of MS in genetically susceptible men (c) and women (d). 

h(u) , g(u) = hazard-functions for developing MS in susceptible men {h(u)} and women {g(u)} 

C , r =  Proportionality constants for disease-prevalence and hazard.                            (see Section F) 

Zm , Zw = probability of  MS and a sufficient environmental exposure (E) in susceptible men (Zm) and 

women (Zw):            Zm  =  P(MS, E│G, M)  ;             and:         Zw   =  P(MS, E│G, F) 
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Table S3.  Components of Genetic Susceptibility to Multiple Sclerosis (MS) 

Breakdown of P(MS) based on a Simple Susceptibility Scheme 

 
E E–  

G P(MS, G, E) P(MS, G, E–) P(MS, G) 

G– P(MS, G–, E) P(MS, G–, E–) P(MS, G–) 

 P(MS, E) P(MS, E–) P(MS) 

 

Breakdown of P(MS) based on a slightly more Complex Susceptibility Scheme 
 

 

 

 

 

 

Definitions (See also Section B & Tables S1 and S2; Section A) 

 G   =  Set of all susceptible genotypes 

 G0   =  Set of susceptible genotypes that depend upon a susceptible environment 

 G3   =  Set of susceptible genotypes that are independent of environment (i.e., purely genetic) 

 G–   =  Set of non-susceptible genotypes – i.e., those with the smallest penetrance:  P(MS│G–) 

 E   =  Set of all susceptible environments 

 E0   =  Set of susceptible environments that depend upon a susceptible genotype 

 E3   =  Set of susceptible environments that are independent of genotype (i.e., purely environmental) 

 E–   =  Set of non-susceptible environments – i.e., those with the smallest penetrance:  P(MS│E–) 

 

 E3 E0 E–  

G3 P(MS, G3, E3) P(MS, G3, E0) P(MS, G3, E–) P(MS, G3) 

G0 P(MS, G0, E3) P(MS, G0, E0) P(MS, G0, E–) P(MS, G0) 

G– P(MS, G–, E3) P(MS, G–, E0) P(MS, G–, E–) P(MS, G–) 

 P(MS, E3) P(MS, E0) P(MS, E–) P(MS) 
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Table S4.  Model Assumptions 

 Assumptions applicable to all propositions: 

A1. P(MS) is approximately equal to the prevalence of MS in the population (see Section B) 

A2. P(MS│G–, SMS)   =   P(MS│G–, CH)   =   P(MS│G–, IGMS)   =   P(MS│G–) 

A5. The genetic composition of the sets (MS), (IGMS), and (MZMS) is the same.  

 Also: P(MS│FT)  =  P(MS│ST)  =  P(MZMS) =  P(IGMS)  =  P(MS)           

             #  i.e., the probability of being a 1st or 2nd MZ-twin is independent of MS-status   

 Therefore, also, for the ith susceptibility genotype (Gi) within (G):      P(Gi│IGMS) = P(Gi│MZMS) = P(Gi│MS)

 Consequently: P(G│IGMS)  =  P(G│MZMS)  =  P(G│MS)  =  g 

 Finally, also: P(Gx+│IGMS)  =  P(Gx+│MZMS)  ;   and: P(Gx+│G, IGMS)  =  P(Gx+│G, MZMS) 

A6. The genetic composition of the sets (G, FT), (G, ST), and (G) is the same 

 Also: P(G│FT)  =  P(G│ST)  =   P(G)       

  # i.e., the probability of being a 1st or 2nd MZ-twin is independent of (G) status   

 Assumptions limited to specific propositions: 

A3. For Props. (1.3) & (5.3), we assume that the observed increased risk of MS from the IU 

 environment (see  observed relationship #5;  Prop. 1) applies to both the (G) and the (G–) subsets 

 (although not necessarily equally to each).  Therefore, we assume that: 

 P(MS, G│DZMS)     ≥   P(MS, G│SMS)        and:     P(MS, G–│DZMS)   ≥   P(MS, G–│SMS) 

A4. For Props. (1.4b, 1.5b, 5 & 6), we assume that:          

        m1  =  P(MS│Gx+, DZMS) / P(MS│Gx+, SMS)  =  P(MS│Gx–, DZMS) / P(MS│Gx–, SMS)  =  m2 

A7. Given our convention that:       P(MS│G, Gx+)  =   zt    ≥    zs   =  P(MS│G, Gx–)  

 For Props. (5 & 6), we assume that:      P(MS│G, Gx+, IGMS)  =   t’    ≥    s’   =  P(MS│G, Gx–, IGMS) 

A8. For Prop. (7.2), we assume that:  (G3) ⊂ (G1)  ;     or, equivalently:       P(G1│G3)  =  1 

A9. For Prop. (8.1), we assume that:  P(HLA+│S–)  ≈  P(HLA+)   

A10. For Section F, we assume that:                       P(MS, E)   ≈   P(MS)  

A11. For Section F, we assume that the hazard for developing MS in susceptible men and women         

 is proportional. 
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1.   The Nature of Genetic Susceptibility 

 We define disease-penetrance for any specific genotype (or, equivilently, any specific individual) as the 

conditional life-time probability of disease given that particular genotype. For MS, it has been established that 

the DRB1*1501 allele, located on the short arm of chromosome 6, is an MS susceptibility-allele.21-26  The set of   

carriers of this allele (HLA+) and the set of non-carriers (HLA–) form a partition of the general population. 

Within the populations of North America and northern Europe, it has been consistently observed that:     

   P(HLA+│MS)  >  P(HLA+) 

            and, thus, also: P(HLA–│MS)  <  P(HLA–)          # (HLA+) and (HLA–) form a partition 

Rewriting, rearranging, and combining these two equations yields:  

(1)   P(MS│HLA+)  >  P(MS)  >   P(MS│HLA–)  

Therefore, a direct consequence of these observations 21-26 is that some genotypes must have a 

higher penetrance (for MS) than others and, therefore, there must be at least one genotype, within the 

population, that has the smallest penetrance of any. The set of all genotyes that share this same smallest 

penetrance is defined as (G–) and its penetrance is P(MS│G–). Members of this set are referred to as being 

“genetically non-susceptible.”  Conversely, the set of all genotyes, which have a penetrance greater than 

this minimum, is defined as (G), and its members are referred to as being “genetically susceptible.”  Based 

on these observations and considerations, therefore, both (G) and (G–) must contain at least one member, 

they are mutually exclusive, and they partition the population (see Table S3; Section A).  Also, the penetrance 

P(MS│G–) may (or may not) be zero, depending upon the prevalence of purely environmental MS (see Main Text). 

In the Model,27 it is supposed that there are some number of susceptibility loci (n) that harbor 

susceptibility alleles (i.e., specific DNA sequences – in either "coding" or "non-coding" genomic regions – which,    

alone or in certain combinations with other such alleles, increase the likelihood of MS compared to individuals    

who possess only non-susceptibility alleles at each  locus). Each locus is assumed to be a chromosomal region   

that is independent of other loci, although a particular locus may harbor more than one susceptibility allele at  

a particualar region or more than one (linked) susceptibility region.27 By definition, the set (G) includes all genetic   

combinations at these n susceptibility loci that lead to genetic-susceptibility. The term P(G) represents the  

probability that an individual in the general population is a member of this set. We can partition (G) into disjoint  

subsets (Gh),where every genetic-combination in the subset (Gh) has, within its collection of genotypes at the  
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Appendix S1; Section B:  Conceptualizing Susceptibility and Disease-Risk  2 

different susceptibility-loci, at least one group of (h) loci, which are in a “susceptible state” and that, by  

themselves (i.e., as a combination), would result in susceptibility to MS.27 In addition, no member of the   

subset (Gh) can have a group of fewer than (h) loci in a “susceptible state” that, by themselves, would lead to 

MS-susceptibility. The term “by themselves” indicates that a person having this particular combination of 

“susceptible states” at the (h) loci is susceptible to getting MS, regardless of the “allelic state” at any other 

genetic locus.27  Each subset (Gh) can be further divided into two sub-subsets (Sh+) and (Sh–) based on 

whether the particular combination that defines membership in the (Gh) subset either does (Sh+) or does not  

(Sh–) include the DRB1*1501 allele. Thus, we can also define two subsets of G, (S+) and (S–), such that: 

 S+  =  ∑ h (Sh+) ;               and:  S–  =  ∑ h (Sh–)  

In this conceptualization, genetic-susceptibility is understood to be (quantitatively) binary – an   

individual is either genetically susceptible or they are not. Nevertheless, within (G), there may be a wide  

variation in the likelihood that MS will develop (i.e., in the penetrance of the different genotypes). As can be  

appreciated from Eq. (1), such a binary structure is a direct consequence of the fact that DRB1*1501 is an  

undisputed MS susceptibility-allele for MS.21-26 Also, as a consequence of this, both the number of susceptibility 

alleles and the number of loci that harbor such alleles must be at least one. Presumably, there are many 

others but, in any case, the total number must also have an upper-bound (i.e., not every allele or locus in the 

genome can be a susceptibility allele or locus). As noted earlier, the combination of allelic states (genotype) 

at the different susceptibility loci that has the least likelihood of resulting in MS, together with all other 

combinations that share this minimum likelihood, constitute the set (G–). Any combination (genotype) that 

increases this likelihood (even by a miniscule amount) belongs, by definition, to the set (G). Thus, the sets 

(G) and (G–) are mutually exclusive and both are non-empty. Nevertheless, the set of susceptible 

individuals (G) could, at least theoretically, encompass virtually the entire population (i.e., all but one 

genotype) and the penetrance of different susceptible-genotypes could range from nearly zero to one.  

The set (G) can also be partitioned into those genotypes that are sufficient to produce disease but 

do so more often, or exclusively, in “susceptible” environmental circumstances (G0), and those that are 

sufficient to produce the disease but do so independently of an individual’s environmental experiences 

(G3). The subset (MS, G3) will be referred to as “purely genetic” MS (see Table S3; Section A).  

dsgoodin
Sticky Note
To Table (S3)
Appendix S1; Section A



Appendix S1; Section B:  Conceptualizing Susceptibility and Disease-Risk  3 

2.   The Impact of Environmental Factors 

As with genotypes, environmental factors can be partitioned into those sets of environmental 

experiences that are sufficient to produce the disease environmentally (E), and those that are not (E–). The 

set (E–), again, is defined as being that environmental exposure, which is associated with the least 

penetrance of MS {i.e., P(MS│E–)} of any environmental experience.   

Analogous to genotypes, it has been consistently observed that: P(MS│DZMS)   >   P(MS│SMS)  

Because DZ-twins and siblings have the same genetic relationship to each other, this observed penetrance 

difference must be due to the different environmental experiences of DZ-twins compared to siblings. 

Therefore, at least one environmental experience must be associated with the least (and greatest) likelihood 

of developing MS. Therefore, the sets (E–) and (E) are also non-empty. 

Also, analogous to “susceptible” genotypes, the subset of “susceptible” environmental exposures 

(E) can be partitioned into those environmental experiences that are sufficient to produce disease but do so 

more often, or exclusively, in “susceptible” genetic backgrounds (E0), and those that produce disease 

independently of the genetic background (E3).  The subset (MS, E3) will be referred to as “purely 

environmental” MS (see Table S3; Section A). 

            Moreover, because environmental factors are not considered in Sections (C – E), the 

conclusions of these propositions do not depend upon specific environmental considerations.  

Rather, they are based on the expected environmental experience of the population as a whole (i.e., E plus E–). 

This is similar to the manner, in which the different environmental events (see Table S3; Section A) 

are distributed over the genotypic make-up of the whole population (i.e., G plus G–). 

To begin, we note that: P(MS, G)  ≥  0.00141 >> 0.00009  ≥  P(MS, G–) ≈ 0         # Props. (4.2d & 5.2b) 

Because: P(MS, G–, E–)   ≤   P(MS, G–)  ≈  0          # (G–, E–)  ⊂  (G–) 

(2)   Therefore, we assume that:   P(MS, G–, E–)  =  0 

Moreover, because:   P(MS│G)  ≤  0.089          # Eq. (8) ; Prop. (7.1a)  

Less than 10% of genetically susceptible individuals will actually develop MS. This indicates that 

environmental factors play a key role of MS pathogenesis.   
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In addition, because: P(G3│G)  ≈  0               # Prop. (7.2)    

therefore:  P(MS│G, E–)  ≈  P(MS│G0, E–) 

The term P(MS│G0, E–) represents the penetrance of genotypes, which are defined by their dependence 

upon a “susceptible” environment to produce MS, but which occur in the setting where the individual 

actually experiences a “non-susceptible” environment.  

For both of these reasons, we assume that:      P(MS│G, E–)  ≈  0 

(3)   This translates to the assumption that:      P(MS, G, E–)  ≈  0     

             And, thus, from Eq. (2 & 3):     P(MS)  ≈  P(MS, E)    # Table S3; Section A 

And, if:   P(E│G, M)  ≈  P(E│G, F)        # Eqs. (28 & 29);  Section F

The observation that: P(MS│G, M)      <<    P(MS│G, F)      <<   1         # Prop. (6.2) 

Indicates that:  P(MS│E, G, M)  <<    P(MS│E, G, F)  <<   1           

If so, then it must be the case that some sufficient environmental exposures (possibly most) are not equally 

effective at producing MS in all susceptible individuals. 

3.  The Relationship of P(MS) to Disease Prevalence 

 By the definition provided in Table S1, P(MS) represents the life-time (longitudinal) probability 

that an individual from the general population (P) will develop MS. In making Assumption (A1), we are 

equating this probability with the (cross-sectional) probability {P(MS│P)} that an individual from the 

general population has MS at some particular point in time. Because almost all MS cases begin (clinically) 

between the ages of 15 and 45 years,3 therefore, using the 2010 United States census data (total resident 

population) as an approximation, we can divide the general population (P) into the three mutually exclusive 

age-band subsets (P1, P2, and P3), defined as: 

 P1  =  {< 15 years} ;     where:     P(P1)   ≈  0.20 ;    and:      P(MS│P1)  ≈  0  

(4) P2  =  {15-45 years};    where:     P(P2)   ≈  0.41 ;    and:      P(MS│P2)  =  (a3)*P(MS) ;    0  <  a3  <  1 

and: P3  =  {> 45 years};     where:     P(P3)   ≈  0.39 ;     and:     P(MS│P3)  ≈  P(MS) 
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 Clearly, using these approximate probabilities (together with these conditional probabilities), if 

they have been assigned correctly for the population under consideration, then our Assumption (A1) that:   

   P(MS)   ≈  P(MS│P) 

will yield an estimate for P(MS), which is too low. The estimate will be better if only the (P2) and (P3)  

subsets are included in the denominator and will be better still if only P(MS│P3) is considered.  

 However, it is also the case that, in any MS cohort, individuals will experience an excessive 

mortality (due to MS) compared an unaffected control population.29 Therefore, an even better estimate 

would be derived from the prevalence in the cohort of the population restricted to ages 45-55 years, in 

which new incident cases are unlikely to occur 3 and where substantial early mortality from MS is unlikely 

to have yet happened.28  

 To get a sense for the possible magnitude of the underestimation, using these approximate 

probabilities above, then, from Eq. (4), we can calculate that:  

 If:          1  >   a3   ≥   0.5 ;            as seems likely with an average onset-age 3 for MS of:   ~30 yrs 

       Then: (1.3)*P(MS│P)   <   P(MS)   ≤  (1.7)*P(MS│P) 

Clearly, a similar underestimation will occur for the quantities P(MS│P, MZMS) and P(MS│P, DZMS); the 

estimates for which, again, rely on cross-sectional probabilities being substituted for longitudinal 

probabilities.  In these cases, however, because the affected proband in the twin-ship is known to have MS, 

he or she (and, thus, also their twin) will already be in either the (P2) or (P3) age-band. Therefore, for all 

ascertained pairs (with at least 1 affected) the degree of underestimation for P(MS│DZMS) and 

P(MS│MZMS) will be less than it is for P(MS). Nevertheless, from Prop. (4.2); Section C, the estimate 

of P(G) is derived from the ratio of these two quantities such that: 

  P(G)    ≤    2*(1.86)*{P(MS) / P(MS│MZMS)}    

Therefore, the under-estimate of P(G) from using P(MS│P) – i.e., by using Assumption (A1) – will be 

mitigated, to some extent, in the ratio.  
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4.  The Number and Uniqueness of Susceptible Genotypes  

 It seems that individual MS patients are unlikely to share specific susceptibility genotypes with 

other MS patients. Thus, both from recent genome-wide screens26 and from theoretical considerations 

alone,27 it seems that there are approximately 100-200 susceptibility loci in the human genome. In addition, 

it seems that, on average, between 11 and 18 of these loci need to be in a susceptible state in order to confer 

susceptibility.27 Under these circumstances, the number of different susceptible combinations (N) will be huge. 

For example, assuming that there are 100 loci, 11 of which are necessary, yields: 

  N  =  (100!) / {(89!)(11!)}  =  1.4  x  1014   genetic combinations 

With 15 necessary loci, this calculation yields:    

  N  =  (100!) / {(85!)(15!)}  =  2.5  x  1017   genetic combinations 

Thus, regardless of the exact distribution of the number of susceptible loci necessary for each 

susceptible genotype, with only 7 billion people on earth (of whom, less than 5% are susceptible), it is 

unlikely that any more than a tiny fraction of MS patients actually share the exact same combination of 

susceptibility genes with another MS patient.  Nevertheless, even granting this conclusion, this does not 

exclude the possibility that patients might still be classifiable into “clusters” of genetic associations. In this 

view, it may be possible to subdivide the universe of susceptible genotypes (i.e., combinations of 

“susceptible genes”) into a more manageable number of different, but possibly overlapping, groups. Thus, 

perhaps, each group would share certain properties (e.g., expected penetrance, involvement of specific 

pathways, and so forth) although no member of the group would share an identical collection of 

susceptibility genes with any other member. Nor would they, necessarily, share any specific subset of 

susceptibility genes. Rather, for example, each member of the group might possess some number of a 

cluster of genes in addition to whatever else is necessary to make their particular genotype susceptible. 

Consequently, in order to identify these “clusters” (if they exist) using a GWAS approach in large 

datasets,26 it is important to test as many different combinations of as many different associated genes as 

possible to explore these “group-associations” with MS. In addition, because gender and HLA-status 

impact MS-susceptibility (see Main Text & Section D), it is important to use this “cluster” approach, not 

dsgoodin
Sticky Note
Back to Menu 
Appendix S1; Section B



Appendix S1; Section B:  Conceptualizing Susceptibility and Disease-Risk  7 

only for the population as a whole, but also for the different subgroups broken down by gender (men or 

women) and/or by HLA-status (carriers of 0, 1, or 2 copies of the DRB1*1501 allele).  

Moreover, as discussed in the text and in Section D, the prevalence of women in the 

susceptible subset (G) is low (28 – 48%). There are (at least) two possible explanations for this 

circumstance. First, it is possible that the genes, which are associated with MS, are different between men 

and women. Second, susceptible women may, on average, require more susceptibility alleles to MS than 

susceptible men.27 Therefore, it would be interesting (and important) to perform the GWAS analyses, 

separately by gender, to determine both whether the same set of genes are associated in men and women 

and, also, whether MS-women possess more of the ~100 identified susceptibility-genes 26 than MS-men. 

Finally, as noted earlier,27 part of the DRB1*1501 effect is seems to be due to reduction in the 

number of susceptibility genes needed to produce susceptibility. If this reduction is of greater magnitude in 

women than men, it might help to explain the gender-difference in MAF between MS-men and MS-women 

(see Main Text & Prop. 6.4; Section D). Therefore, in the large datasets now becoming available,26 it 

would be important to confirm that the MAF difference between men and women actually exists, to 

confirm the observation that each DRB1*1501 allele and each “(HLA–) allele” has an independent impact 

on susceptibility, and to compare the number of susceptibility genes present for the different subgroups 

broken down both by gender and by HLA-status. 
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Proposition 1:   1. P(MS)   >   P(MS│G–) 

   2.  P(MS│G–, Gx+) =  P(MS│G–, Gx–)  =  P(MS│G–, SMS)  =  P(MS│G–) 

   3.  P(MS, G│MZMS)  >  (0.90) P(MS│MZMS)  =  0.224 

   4.  P(MS│IGMS)  =  b   =  0.134 

   5. P(MS, G│IGMS)   >   (0.99)*P(MS│IGMS)  ≈  P(MS│IGMS)  =  b 

   6. P(MS│G, MZMS)  ≥  P(MS│G, IGMS)  =  b/g  =  b’   ≥   b   

   7. If the Gx+ state is associated with MS, then, so too, is the Gx– state 

Definitions for Proposition 1:       (See also Table 1; Main Paper) 

1. (MZMS), (DZMS), (SMS) =  sets of persons who have a monozygotic (MZ)-twin, a dizygotic (DZ)-twin,   

    or a sibling (S) with MS but whose MS-status is unknown. 

 (IGMS)  =  hypothetical set of persons with identical genotypes (IG) to the set (MZMS) but who have the    

                  environmental experience (including both intra-uterine and childhood) of the general population. 

2. (G), (G–)        =    sets of persons who are (G) or are not (G–) genetically susceptible to MS (see Section B). 

   P(MS│G)  >  P(MS│G–)       # From the definition of  P(MS│G–); Section B 

   P(G)  +  P(G–)  =  1       # (G) & (G–) partition the population 

3. (Gx+), (Gx–)  =    sets of persons who either have (Gx+) or lack (Gx–) the (Gx) genetic characteristic.  

   P(Gx+)  +  P(Gx–)   =  1       # (Gx+) & (Gx–) partition the population 

4. (IU), (CH)      =    sets of persons who share intra-uterine (IU) or childhood (CH) environments with an MS proband. 

5. b  =  P(MS│IGMS);  b’  =  P(MS│G, IGMS);    t  =   P(MS│Gx+, IGMS)  

 s  =  P(MS│Gx–, IGMS);  g  =   P(G│MS)  =  P(G│IGMS)  =  P(G│MZMS)   

 g1  =   P(G│Gx+, IGMS);  g2  =   P(G│Gx–, IGMS)  m  =  P(MS│DZMS) / P(MS│SMS) 

 m1  = P(MS│Gx+, DZMS) / P(MS│Gx+, SMS) m2  =  P(MS│Gx–, DZMS) / P(MS│Gx–, SMS) 

Observed Relationships:     

1. P(MS, G)  >  0;   and, thus:   P(G)  > 0    # At least some cases of MS are due to genetic factors 3, 6, 9, 13, 17, 20 

2. P(MS│CH)  =  P(MS)              # MS is independent of the shared CH micro-environment 4-7, 9, 10, 19, 20 

3.  P(G│DZMS)  =  P(G│SMS)                        # DZ twins and siblings are genetically similar  

4. P(MS│MZMS)  =  P(MS│IU, CH, IGMS)  =  P(MS│IU, IGMS)      # From Definitions (1 & 4); Relationship (2) 

5. P(MS│DZMS)  =  P(MS│IU, CH, SMS)  >  P(MS│SMS)       # From Definitions (1 & 4); Relationship (2) 
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Assmptuions: 

A1. P(MS) is approximately equal to the prevalence of MS in the population (see Section B for a discussion) 

A2. P(MS│G–, SMS)  =  P(MS│G–, CH)  =  P(MS│G–, IGMS)  =  P(MS│G–)           # See Prop. (1.2a) for a discussion 

A3. For Prop. (1.3), we assume that the observed increased risk of MS from the IU environment (see observed             

 relationship #5 above) applies to both the (G) and the (G–) subsets (although not necessarily equally to each).     

              Thus, we assume that: P(MS, G│DZMS)  ≥  P(MS, G│SMS)      and:    P(MS, G–│DZMS)   ≥    P(MS, G–│SMS)    

A4. For Props. (1.4b, 1.5b, 5 & 6), we assume that:         m1   =   m2    

Proof of Proposition 1.1  

 P(MS)  =   P(MS, G)  +  P(MS, G–)   =   P(G)*P(MS│G)   +   P(G–)*P(MS│G–)    

 Because, by definition: P(MS│G)  >  P(MS│G–) ;          and: P(G)  +  P(G–)  =   1 

 Therefore:     P(MS)   >   P(G)*P(MS│G–)  +  P(G–)*P(MS│G–)   =   P(MS│G–)     

 Also:     P(MS, G)  =  (g)*P(MS)   ≤   P(MS)    #   0  <  g  ≤  1          

Proof for Proposition 1.2: 

1.2a. By definition, P(MS│G–) has the least penetrance of any genotype. Moreover, based on observations from  

 Canada, the impact of a shared CH environment on disease occurrence seems to be minimal. 4-7, 9, 10, 19, 20  

 Thus, we assume that:        P(MS│G–, SMS)  =  P(MS│G–, CH)  =  P(MS│G–)  # Assumption (A2)   

 The term (IGMS) is defined, specifically, to exclude the impact of the CH and IU environments beyond any  

 possible impact of CH in siblings (see Prop. 1.4a).  Therefore, also: P(MS│G–, IGMS)   =   P(MS│G–) 

The set (G–) has the lowest penetrance of any genotype (see Section B).  

Therefore: P(MS│G–, Gx+)  =  P(MS│G–, Gx–)   =   P(MS│G–) 

1.2b. From Props. (1.1) & (1.2a): 

  P(MS, G–│SMS)  =   P(G–│SMS)*P(MS│G–, SMS)   =   P(G–│SMS)*P(MS│G–)   <   P(MS) 

 Thus: P(MS, G│SMS)    =   P(MS│SMS)  –  P(MS, G–│SMS)  >   P(MS│SMS)  –  P(MS) 

 or: P(MS, G│SMS)    >   P(MS│SMS)  –  P(MS)  =  0.029 – 0.0015 = 0.0275                  # Data:   Table (2) 

 so that: P(MS, G│SMS)    >   (0.0275 / 0.029)*P(MS│SMS)  =  (0.95)*P(MS│SMS) 

 Consequently, over 95% of concordant MS in siblings is due to genetic susceptibility. This percentage  

 increases to much more than (95%) when a more realistic estimate for P(MS, G–│SMS) is used. 
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Proof for Proposition 1.3: 

 Because:            P(MS│DZMS)  =  0.054  >  0.029  =  P(MS│SMS)                         # Data:   Table (2) 

        and:  P(G│DZMS)  =  P(G│SMS)           # DZ-twins are genetically siblings 

 Therefore, the shared intrauterine (IU) environment, the more similar childhood (CH) environment of  

 DZ-twins (compared to non-twin siblings), or both, increase the risk of MS. However, the fact that all  

 siblings share similar CH environments, together with the actual evidence, 4-7, 9, 10, 19, 20 suggest that this is  

 increased MS-risk in twins is due, almost entirely, to an IU environmental effect. 

 Therefore: P(MS│DZMS)  =  P(MS│IU, SMS)   =  P(MS, G│IU, SMS)  +  P(MS, G–│IU, SMS) 

 And:  P(MS│DZMS)   =    P(MS, G│IU, SMS)  +  P(MS, G–│IU)   # Prop. (1.2a) 

 Also:  P(MS, G│IU, SMS)  ≥   P(MS, G│SMS)  >  0.0275               # Prop. (1.2b) & Assumption (A3) 

     (1) Thus: P(MS, G–│IU) =  P(MS, G–│DZMS) = P(MS│DZMS) – P(MS, G│IU, SMS)  <  0.054 – 0.0275  =  0.0265 

Using the same IU adjustment in MZ-twins (and Assumption A3) then:  

  P(MS, G│MZMS)  =  P(MS│MZMS) –  P(MS, G–│IU)  >  0.25  –  0.0265  =  0.224                 # Eq. (1) 

 Thus:  P(MS, G│MZMS)   >   (0.224 / 0.25)*P(MS│MZMS)  =  (0.90)*P(MS│MZMS) 

Proof of Proposition 1.4:  

1.4a. P(MS│DZMS)  =  P(MS│IU, SMS)  =  m*P(MS│SMS)   ;      m  =  0.054 / 0.029  =  1.86       # Data:   Table (2) 

 Using the same IU adjustment for MZ-twins, then:  P(MS│MZMS)  =  (m)*P(MS│IGMS)   

 And, thus:  b  =  P(MS│IGMS)  =  P(MS│MZMS) / (m)  =  (0.25) / (1.86) =  0.134           # Data:   Table (2) 

1.4b. The quantities (m1) and (m2) are defined such that:  

   t  =  P(MS│Gx+, IGMS)  =  P(MS│Gx+, MZMS) / m1 

      and also: s  =  P(MS│Gx–, IGMS)  =  P(MS│Gx–, MZMS) / m2 

 which is subject to the condition that:        mb   =   P(Gx+│MS)*(m1)t  + P(Gx–│MS)*(m2)s 

 From Assumption (A4):      m1   =   m2  ;        and, therefore: m1   =   m2   =   m 

 For the gender partition (Gx+ = F), the actual data from Table 2 suggests, if anything, that:  

  m1  =  (0.051 / 0.039)   =  1.31   <   3.0  =  (0.057 / 0.019)   =   m2 

 Such a violation of Assumption (A4) would only serve to increase the estimated excess of men in the

              genetically susceptible population (G) – a condition, which, as indicated in Prop (6.2a), already exists 
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Proof of Proposition 1.5: 

1.5a. Using the logic of Prop. (1.2b)  –  [i.e., substituting IGMS  for SMS ]  –  & from Prop. (1.1), therefore: 

  P(MS, G–│IGMS)  = P(G–│IGMS)*P(MS│G–, IGMS)  =  P(G–│IGMS)*P(MS│G–)  <  P(MS)  

 Thus: P(MS, G│IGMS)  =  P(MS│IGMS)  –  P(MS, G–│IGMS)  >   P(MS│IGMS) –  P(MS)  =  b  –  P(MS) 

 where:  b  –  P(MS)  =  0.134 – 0.0015  =  0.1325  ;  and consequently: 

     (2)      P(G│MS, IGMS)  =  P(MS, G│IGMS) / P(MS│IGMS)   >   [b  –  P(MS)] / b   =  0.1325 / 0.134  =  0.99 

 With a more realistic estimate of P(MS, G–│IGMS), this estimate of (> 99% ) is increased still further. 

1.5b.      From Eq. (2), therefore, for all practical purposes:        b  =  P(MS│IGMS)  =  P(MS, G│IGMS)   

 Thus, the sets (MS, IGMS) and  (MS, G, IGMS) are the same.  Therefore, also:  

   t  =  P(MS│Gx+, IGMS)  =  P(MS, G│Gx+, IGMS) 

   s  =  P(MS│Gx–, IGMS)  =  P(MS, G│Gx–, IGMS) 

Proof of Proposition 1.6:   

 From Prop. (1.5b) and Assumption (A2):       

  P(MS│IGMS)  =  P(MS, G│IGMS)  =  P(G│IGMS)*P(MS│G, IGMS)  =  g*P(MS│G, IGMS)    

 Therefore:         P(MS│G, IGMS)   =   P(MS│IGMS) /g   =   b/g   =   b’    ≥    b 

 Similarly:        P(MS│Gx+, G, IGMS)   =  t/g1  ;        and: P(MS│Gx–, G, IGMS)   =  s/g2 

Proof of Proposition 1.7:   

1.7a. If:       P(G│Gx+)  =  P(G)  ;    then:     P(G, Gx+)  =  P(G)*P(Gx+)          # i.e., if: (G) and (Gx+) are independent 

 However: P(G)   =   P(G, Gx+)  +  P(G, Gx–)  =   P(G)*P(Gx+)   +  P(G)*P(Gx–│G)     

              which yields:                1 –  P(Gx+)   =   P(Gx–)   =   P(Gx–│G)                 # Dividing by P(G) & rearranging      

 Also:  P(Gx+)  =  P(G, Gx+)  +  P(G–, Gx+)  =  P(Gx+)*P(G)   +  P(Gx+)*P(G–│Gx+) 

              which, yields:            1  –  P(G)   =   P(G–)   =  P(G–│Gx+)                     # Dividing by P(Gx+) & rearranging  

              
 Similarly:            P(G–)  =  P(G–, Gx+)  +  P(G–, Gx–)  =  P(Gx+)*P(G–)   +  P(G–)*P(Gx–│G–) 

              
which yields:              1  –  P(Gx+)   =   P(Gx–)   =  P(Gx–│G–)              # Dividing by P(G–) & rearranging  

              Thus, the independence of (G) and (Gx+), implies the independence of (G) and (Gx–), of (G–) and (Gx+),

               and of (G–) and (Gx–).
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1.7b. If: P(MS│G, Gx+)  =  P(MS│G)  ;    then: P(MS, Gx+│G)  =  P(MS│G)*P(Gx+│G)          

 also: P(MS│G) – P(MS, Gx–│G) = P(MS│G)*{1– P(Gx–│G)} = P(MS│G) – P(MS│G)*P(Gx–│G)} 

              so that:    P(MS, Gx–│G) = P(MS│G)*P(Gx–│G)  ;      and, thus:       P(MS│G, Gx–)  =  P(MS│G)   

 Alternatively, if we start with the condition:  P(MS│G, Gx+)   =   P(MS│G, Gx–) 

 Then: P(MS│G)   =    P(MS│G, Gx+)*P(Gx+│G)  +  P(MS│G, Gx–)*P(Gx–│G)   

        =    P(MS│G, Gx+)*{P(Gx+│G)  +  P(Gx–│G)}  =   P(MS│G, Gx+) 

1.7c.  Each argument in Props. (1.7a) & (1.7b) is reversible. Thus, each conclusion implies each starting condition. 

 Consequently:     P(G│Gx+)  =  P(G)  ;                     if and only if:        P(G│Gx–)  =  P(G) 

 and also:               P(MS│G, Gx+)  =  P(MS│G)  ;     if and only if:        P(MS│G, Gx–)  =  P(MS│G) 

1.7d. If the conditions of both Props. (1.7a) & (1.7b) hold, then: 

    (3)  P(MS, G│Gx+)  =  P(G│Gx+)*P(MS│G, Gx+)  =  P(G)*P(MS│G)  =  P(MS, G) 

 and it also follows from Prop. (1.7c) that:   

    (4)  P(MS, G│Gx–)  =  P(G│Gx–)*P(MS│G, Gx–)  =  P(G)*P(MS│G)  =  P(MS, G) 

1.7e. If the conditions of Props. (1.7a) & (1.7b) hold, then, using Props. (1.2a) & (1.7a), it also follows that: 

      P(MS, G–, Gx+)  =  P(G–, Gx+)*P(MS│G–, Gx+)  =  P(Gx+)*P(G–)*P(MS│G–)  =  P(Gx+)*P(MS, G–) 

   (5) Dividing by P(Gx+) this becomes:  P(MS, G–│Gx+)  =  P(MS, G–)  

   (6)    and similarly:  P(MS, G–│Gx–)  =   P(MS, G–)    # Prop. (1.7c)   

 From Eqs. (3 & 5), therefore:  

  P(MS│Gx+)  =  P(MS, G│Gx+)  +  P(MS, G–│Gx+)  =  P(MS, G)  +  P(MS, G–)  =  P(MS)     

 and similarly:   P(MS│Gx–)  =  P(MS)     # Eqs. (4) & (6) 

 Therefore, in circumstances where Props. (1.7a) & (1.7b) hold, then Eq. (3) also holds.  

 {NB: Eq. (3) could hold under circumstances where Props. (1.7a) & (1.7b) do not hold} 
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             PG|Gx+) = {P(G)*P(MS|G)} / P(MS|G,Gx+)  ≠ P(G)
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                 P(MS|G)  =  P(MS,Gx+|G)  + P(MS,Gx-|G)

so that:     P(MS|G) - P(MS,Gx-|G)  =  P(MS,Gx+|G) 

By our Condition:    P(MS,Gx+|G)  =  P(MS|G)*P(Gx+|G)

Also:           P(Gx+|G) = 1 - P(Gx-|G)

So that:      P(MS|G) - P(MS,Gx-|G)  =  P(MS|G)*{1 - P(Gx-|G)}
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 Nevertheless, when Props. (1.7a) & (1.7b) do hold, (Gx+) status is independent of MS-status and,  

 thus, whatever defines (Gx+) is not associated with MS.  

 Conversely, when Eq. (3) doesn’t hold (i.e., where the Gx+ state is associated with MS), then it must  

 also be the case that, at least, one of these conditions – Prop. (1.7a) or (1.7b) – does not hold; and also that 

 Eq. (4) does not hold.  

 Consequently, if the (Gx+) state is associated with MS, then, so too, is the (Gx–) state. 
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Proposition 2:  1. P(MS│G, IGMS)   ≥   P(MS│G)     or: b’  ≥  z 

   P(MS│G1, IGMS)   ≥   P(MS│G1)     or: x’  ≥  x  

   P(MS│G2, IGMS)   ≥   P(MS│G2)     or: y’  ≥  y 

  2. P(G1│G, IGMS)   ≥  P(G1│G)  ;    and:    P(G2│G, IGMS)   ≤  P(G2│G) 

  3. t’/s’    ≥    zt / zs   =   E(zj) / E(zk)  

New Definitions for Proposition 2:         (See also Table 1; Main Paper) 

1. P(MS│FT), P(MS│ST)  =  probability that the first (FT) or second (ST) twin of an MZ twin-pair will             

 get MS, independent of whatever has happened or will happen to their co-twin 

2. z   = P(MS│G)      P(i)  =  P(Gi│G) 

3. P(MS│Gi)  =   zi              P(MS│Gj)  =   zj          P(MS│Gk)  =   zk 

4.           Gi   =  the ith susceptibility genotype within (G) ;              where:   E(zi)   =  z   ;   and:   Var(zi)  =  σzi
2 

              Gj   =  the jth susceptibility genotype within (G, Gx+) ;     where:   E(zj)   =  zt  ;   and:   Var(zj)  =  σzj
2  

              Gk   =  the kth susceptibility genotype within (G, Gx–) ;    where:   E(zk)  =  zs  ;   and:   Var(zk)  =  σzk2

 
 

5. nb   =  the total number of susceptible genotypes in (G) 

 nt    =  the total number of number susceptible genotypes in (G, Gx+) 

 ns   =  the total number of susceptible genotypes in (G, Gx–) 

6. (G1)  =  High-penetrance subset of (G), such that:   (Gi ∈ G1)│{zi  >  z} 

 (G2)  =  Low-penetrance subset of (G), such that:   (Gi ∈ G2)│{zi  <  z} 

 If:     zi  =  z ;  then these genotypes are assigned to (G1) and (G2) evenly and randomly so that  

  the sets (G1) and (G2) are mutually exclusive and form a partition of (G).  

 Thus: P(G1│G)   +   P(G2│G)  =  1 

7. x  =   P(MS, G│G1)  =  P(MS│G, G1)   =   P(MS│G1)  # Because:  (G1) ⊂ (G) 

y  =   P(MS, G│G2)   =  P(MS│G, G2)   =   P(MS│G2)  # Because:  (G2) ⊂ (G) 

x’  =  P(MS, G│G1, IGMS)  =  P(MS│G1, IGMS)   # Because:  (G1) ⊂ (G) 

y’  =  P(MS, G│G2, IGMS)  =  P(MS│G2, IGMS)   # Because:  (G2) ⊂ (G)  

8. t’  =   P(MS│G, Gx+, IGMS)  =  P(MS│Gx+, IGMS) / P(G│Gx+, IGMS)         # Prop. (1.5b) 

 s’  =   P(MS│G, Gx–, IGMS)  =  P(MS│Gx–, IGMS) / P(G│Gx–, IGMS)          # Prop. (1.5b)
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Assumptions:  

A5. The genetic composition of the sets (MS), (IGMS), and (MZMS) are the same.  

 Also: P(MS│FT)  =  P(MS│ST)  =  P(MZMS) =  P(IGMS)  =  P(MS)           

             #  i.e., the probability of being a first or second MZ-twin is independent of MS-status   

 Therefore, also, for the ith susceptibility genotype (Gi) within (G):      P(Gi│IGMS)  =  P(Gi│MZMS) =  P(Gi│MS) 

 Consequently: P(G│IGMS)  =  P(G│MZMS)  =  P(G│MS)  =  g 

 Finally, also: P(Gx+│IGMS)  =  P(Gx+│MZMS)  ;   and: P(Gx+│G, IGMS)  =  P(Gx+│G, MZMS) 

A6. The genetic composition of the sets (G, FT), (G, ST), and (G) are the same 

 Also: P(G│FT)  =  P(G│ST)  =  P(G)           

             # i.e., the probability of being a first or second MZ-twin is independent of (G) status   

A7. Given our convention that:           P(MS│G, Gx+)  =   zt    ≥    zs   =  P(MS│G, Gx–)  

 For Props. (5 & 6), we assume that:          P(MS│G, Gx+, IGMS)  =   t’    ≥    s’   =  P(MS│G, Gx–, IGMS) 

   (see Prop. 2.3 for a consideration of the validity of this assumption) 

Proof of Proposition 2.1: 

  P(MS│G, Gi)  =  P (MS│Gi)  =    zi ;    Gi ∈ (G)  ;       For:      i = 1  to  nb                # By definition  

 Therefore, because (Gi) is a subset of (G)  –  i.e.,   Gi   ⊂  (G)  –  therefore: 

  P(G, Gi)  =  P(Gi) ;     P(MS│G, Gi)  =  P(MS│Gi) ;     and:  P(MS, G, Gi)  =   P(MS, Gi) 

 By Assumptions (A5 & A6), for the sets (Gi, MS) and (G, MS);  it must be the case that: 

  (Gi, MS)   =  (Gi, IGMS)  ;           and:    (G, MS)  =  (G, IGMS)   

     (1) Therefore: P(Gi│G, MS)   =   P(Gi│G, IGMS)  ;      and:       P(G│MS)   =   P(G│IGMS) 

 Among the population of susceptible individuals, the probability of the (ith) genotype, P(i), is:  

  P(i)  =  P(Gi│G)  ;      so that:   ∑ i P(i)  =  1 

 By definition, the penetrance of any specific genotype is expected to be the same under equivalent          

 environmental circumstances. The quantity P(MS│IGMS) has been specifically adjusted (Prop. 1.4a) to  

 remove the impact of the similar environment that twins experience. Therefore, by definition:   

    
 (2)  P(MS│G, Gi, IGMS)  =  P(MS│G, Gi)  =  P(MS│Gi, IGMS)  =  P(MS│Gi)  =   zi             #  Gi  ⊂  (G) 
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 With these definitions and assumptions, by the definition of mathematical expectation for the discrete                       

 random variable (zi), and from the definition of the variance (σzi
2) of such a variable, therefore: 

  E(zi)  =  ∑ i (zi)*P(i)  =  ∑ i P(MS│G, Gi)*P(Gi│G)  = ∑ i P(MS, Gi│G) = P(MS│G)  =  z  

     (3)  E(zi
2)  =  ∑ i (zi

2)*P(i)  =  ∑ i (zi
2)*P(Gi│G)   =   {E(zi)}2   +   σzi

2     =     z 2   +   σzi
    2        

 And, using Assumptions (A5 & A6) together with Eqs. (1 & 2) yields:  

  P(MS, Gi│G, IGMS)  =  P(Gi│G, IGMS)*P(MS│G, Gi, IGMS)  =  P(Gi│G, MS)*(zi) 

     (4) where: P(Gi│G, MS)  =  P(MS, G, Gi) / P(MS, G)   =  {P(MS│Gi)*P(Gi│G)} / P(MS│G)   =   (zi)*P(Gi│G)/ z 

 Therefore: P(MS, Gi│G, IGMS)  =  {(zi)*P(Gi│G) / z}*(zi)  =  (zi
2)*P(Gi│G) / z   =  (zi

2)*P(i) / z 

 Also, because: ∑ i P(MS, Gi│G, IGMS)  =  P(MS, G│G, IGMS)  =   P(MS│G, IGMS)  =  b’  

 Therefore, from Eq. (3), it follows that:  

     (5)  b’  =  ∑ i P(MS, Gi│G, IGMS)  =  ∑ i (zi
2)*P(i) / z   =  E(zi

2) / z  =  z  +  (σzi
2) / z    ≥   z  =  P(MS│G) 

     (6)      Similarly:  t’  =  ∑ j (zj
2)*P(j) / zt     =  E(zj

2) / zt  =  zt  + (σzj
2) / zt   ≥   zt    =  P(MS│G, Gx+) 

     (7)  and: s’  =  ∑ k (zk
2)*P(k) / zs   =  E(zj

2) / zs =  zs  + (σzk
2) / zs    ≥   zs    =  P(MS│G, Gx–) 

  Thus, the penetrance for susceptible individuals from the MZMS population is increased compared  to the                   

 penetrance for susceptible individuals in the general population (NB: similar logic applies equally to its subsets). 

Therefore, also:   P(MS│G1, IGMS)   ≥   P(MS│G1)  ;    or: x’  ≥  x  

      and:  P(MS│G2, IGMS)   ≥   P(MS│G2)  ;    or: y’  ≥  y 

Proof of Proposition 2.2:  

  P(Gi│G, MS)  =  P(Gi│G, IGMS)  =  {(zi)*P(Gi│G)} / P(MS│G)           # Eq. (4) & Assumptions (A5) & (A6)  

 By convention, we will designate any pair of genotypes {(G1) and (G2)} such that:  z1   ≥   z2  

 In this case, Eq. (4) can be rearranged (for each of the pair) to yield: 

   P(G1│G, IGMS) / P(G1│G)  =  (z1) / P(MS│G)    

 and also:  P(G2│G, IGMS) / P(G2│G)  =  (z2) / P(MS│G)         

 Thus:  P(G1│G, IGMS) / P(G1│G)  ≥  P(G2│G, IGMS) / P(G2│G)  # by our convention 
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From the definition of Mathematical Expectation:       

              E(x)  =  ∑ x*P(x)

and the definition of variance:

             Var (x)  =  E(x2) – {E(x)}2 
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 By extension, this must also apply, collectively, to the genotypes in the (G1) and (G2) subsets. 

 Thus:  P(G1│G, IGMS) / P(G1│G)  ≥  P(G2│G, IGMS) / P(G2│G) 

 Moreover, defining: bi’  = P(MS│IGMS, Gi) ;    then, as in Eq. (4), it follows that: 

      P(Gi│G, MS, IGMS)  =  {P(MS│IGMS, Gi)*P(Gi│G, IGMS)} / P(MS│G, IGMS)  =  (bi’)*P(Gi│G, IGMS)/ b’ 

 Therefore, substituting:   b1’   ≥   b2’  ;    for:    z1   ≥   z2  ;  into the above equations, and using the same logic          

 as above for both (G1) and (G2), leads to the conclusion that: 

  P(G1│MS, G, IGMS) / P(G1│G, IGMS)  ≥  P(G2│MS, G, IGMS) / P(G2│G, IGMS) 

 Consequently, more penetrant genotypes are enriched to a greater extent than less penetrant genotypes in both 

 the (MS) and the (MS, IGMS) populations. Also, because (G1) and (G2) partition (G), therefore:  

  P(G1│MS, G, IGMS)  ≥  P(G1│G, IGMS)   ≥  P(G1│G) 

and, also: P(G2│MS, G, IGMS)  ≤  P(G2│G, IGMS)   ≤  P(G2│G) 

Proof of Proposition 2.3: 

 We can define the discrete random variable (aj) as the set of coefficients that randomly pair each of  

 the (j) genotypes in (G, Gx+) with a genotype in a subset (kj) of the genotypes in (G, Gx–). 

 The penetrance of the (kj) subset will be defined as: P(MS│Gkj)  =  zkj    

 We can then chose the subset (kj) such that:     E(zkj)  =  zs  ;        and:     Var(zkj)  =  Var(zk) 

 If (j > k), then some of the genotypes in (G, Gx–) will be used more than once to make up the (kj) subset. 

 The (aj) coefficients will be chosen such that:              zj   =   (aj)(zkj) ;    where, we define:     E(aj)  =  a   ≥  1   

 Because the sets (G, Gx+) and (G, Gx–) are mutually exclusive, the random variables (zj) and (zk) are expected         

to be independent. In this case, (aj) and (zkj) will also be independent, as will (aj) and (zk). 

 Therefore: E(zj)   =   E(ajzkj)  =  E(aj)*E(zkj)  =  azs   =   zt   

 and: Var(zj)  =  Var(ajzkj)  =  (a)2*Var(zk) + (zt)2*Var(aj) + Var(zk)*Var(aj)  ≥  (a)2*Var(zk)  =  Var(azk) 

 In which case: t’  = zt  + Var(zj) / zt   ≥   (a)zs  +  (a)2*Var(zk) / azs   =   as’         # Eqs. (5 & 6); Prop. (2.1) 

     (8) and, therefore:  t’/s’    ≥    zt / zs   =   E(zj) / E(zk)  =  a   ≥  1          

 Thus, if (zj) and (zk) are independent, as expected, Assumption (A7) and Eq. (8) will necessarily hold. 
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Proposition 3:  1. a.  z  =  px  + (1 – p)y   ≥   y ;       or:       p  =  (z – y) / (x – y) 

    b. q  =  px / [px  +  (1 – p)y] 

  2. a. q’x  +  (1 – q’)y  =  b’ 

   b. p  ≤  q 

   c. If: q  =  q’ ;      then:      b’  =  {(px2)  +  (1 – p)y2} / z 

  3. a. q  ≤  q’  

   b.       x   ≥   b’  ≥  z  ≥  y 

   4. a.  a  ≥   x  ≥   b’  

    b.  a’ ≥  b’    

New Definitions for Proposition 3:       See also previous Definitions in Props. (1) & (2); see also Table 1; Main Text 

1. p   =  P(G1│G)  =  P(G, G1) / P(G)  =  P(G1) / P(G);  q   =  P(G1│G, MS)  

q’  =  {P(MS│G, IGMS)  –  P(MS│G2)} / {P(MS│G1)  –  P(MS│G2)}    =    (b’ –  y) / (x –  y) 

2. a  =  P(MS, G) / P(G1) ;     a’ =  P(MS, G) / P(G2) 

Defined Relationships: 

 P(IGMS)   =   P(MZMS)   =   P(MS)  # by definition of  P(MZMS) and P(IGMS); Assumption (A5 & A6) 

 P(MS│G1)   =   x   ≥   P(MS│G)    ≥    y   =   P(MS│G2)    # by the definitions of (G1) and (G2) 

P(G1)  +   P(G2)   =   P(G)     # by definition, (G1) and (G2) partition (G) 

 P(G, Gx+)  +   P(G, Gx–)   =   P(G)    # by definition, (Gx+) and (Gx–) partition (G) 

Proof for Proposition 3.1: 

3.1a P(MS, G│G1)  =  P(MS│G1) ;        and: P(MS, G│G2)  =  P(MS│G2)   # (G1), (G2) ⊂ (G) 

P(MS, G)     =   P(G)*P(MS│G)    =    P(G1)*P(MS, G│G1)   +   P(G2)*P(MS, G│G2) 

       =    p*P(G)x + (1 – p)*P(G)y               # By definition of (p), (x), and (y) 

Thus: P(MS│G)  =   z  =  px  +  (1 – p)y  ;      or, with rearrangement:         p  =  (z – y) / (x – y) 

Because:         x  ≥  y  ;  and:    p  ≥  0 ;         therefore:    z   ≥   y  # By the definitions 
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3.1b. q  =  P(G1│MS, G)   =   P(MS, G1│G) / P(MS│G)   =   P(G1│G)*P(MS│G1, G) / P(MS│G) 

                     =   {p*P(MS│G1)} / P(MS│G)          # (G1) ⊂ (G) & By definition of (p) 

     (1) Therefore:     q  =  px / [px + (1 – p)y]  =   p(x/z) ;       and:      (1 – q)  =  (1 – p)(y/z)              # Prop. (3.1a)  

Also:    P(MS│G, IGMS)  =  P(G1│G, IGMS)*P(MS│G1, IGMS)  +  [1 – P(G1│G, IGMS)]*P(MS│G2, IGMS) 

  or: b’  =  qx’  +  (1 – q)y’                 # By the definitions 

Proof of Proposition 3.2: 

3.2a. By definition:  q’  =  {P(MS│G, IGMS) – P(MS│G2)} / {P(MS│G1) – P(MS│G2)}  =  (b’ – y) / (x – y) 

 Simple rearrangement leads to:  q’x  +  (1 – q’)y   =  b’   

3.2b Rearrangement of Eq. (1) yields: p / (1 – p)  =  [q / (1 – q)]*[y / x] 

 Therefore, if:   q   <   p    ;     then: P(MS│G2)  =  y   >   x  =  P(MS│G1)  

 However, because, by definition:     x   ≥   y ; therefore: q   ≥   p 

3.2c. If: q  =  q’ ;      then:      b’  =  qx  +  (1 – q)y  =  {px2  +  (1 – p)y2} / z        # Prop. (3.2a) & Eq. (1) 

 and, thus:    P(G1│MS, G, IGMS)   =   qx / b’   =    px2 / zb’    =    px2 / {px2  +  (1 – p)y2} 

Proof of Proposition 3.3: 

3.3a. Because: b’   =    P(MS│G, IGMS)   =   q’x   +   (1 – q’)y          # Prop. (3.2a) 

 and, because: b’   =    P(MS│G, IGMS)   =   qx’   +   (1 – q)y’   # Prop. (3.1b) 

 and, because: x’  ≥  x  ;      and:       y’  ≥  y              # Prop. (2.1) 

 Therefore: b’   =    q’x  +  (1 – q’)y   =    qx’  +  (1 – q)y’    ≥    qx   +  (1 – q)y 

 Simple rearrangement leads to:   (q’ –  q)(x  –  y)   ≥   0 

 However, because, by definition:     x   ≥   y ; therefore: q’   ≥   q  

3.3b. It follows from the definitions and from Props. (3.1a), (3.2a),  & (3.3a) that: 

  (b’ – y) / (x – y)   =   q’  ≥   q   ≥   p  ≥  0  ;    and, therefore:    b’  ≥  y     # Because   x  ≥  y     

 Moreover, if: x   <   b’  ;        then: b’    =    q’x   +  (1 – q’)y    <    q’b’   +   (1 – q’)y 

 or, with rearrangement:                   y   >   b’  >  x     

              However, because, by definition:        x   ≥   y  ;       therefore, we conclude that:        x   ≥           b’   ≥       y      
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From the premise of this Proposition and
From Prop. (3.2a) & Eq. (1): 

q=q' ;     q=p(x/z);       (1-q)  = (1-p)(y/z)       

and:        b' = q'x + (1-q')y 

Therefore:

b'  = p(x/z)*x (1-p)(y/z)*y

     = {p(x2) + (1-p)y2} / z

zb'  =  p(x2) + (1-p)y2

qx/b'  =  p(x2)/zb'  =  p(x2) / {px2) + (1-p)y2}
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Proof of Proposition 3.4: 

3.4a We define:  a   =   P(MS, G) / P(G1)   ≥   P(MS, G1) / P(G1)   =   P(MS│G1)   =   x  # (G1) ⊂ (G) 

 Therefore: a   ≥    x   ≥    b’  ≥   y                    # Combined with Prop. (3.3b) 

3.4b. a   =  P(MS, G) / P(G1)   =   P(MS, G) / p*P(G)   =   P(MS│G) / p     # By definition of (a) 

              a’  =  P(MS, G) / P(G2)   =   P(MS, G) / (1 – p)*P(G)   =   P(MS│G) / (1 – p)                    # By definition of (a’) 

 Because: p   ≤  1 ;    and:  (1 – p)   ≤  1  

 Therefore: a   ≥   P(MS│G)  =  z ;        and: a’   ≥   P(MS│G)  =  z 

 Also, whenever (p) and (1 – p) represent the same percentage, then:  a   =   a’ 

 Throughout the domain of:       0  <  p  <  1;     {or , equivalently:      0  <  (1 – p)  <  1}   

   (1 – p)a’  =   pa  =  P(MS│G)  =  z 

 In this way (a) and (a’) mirror each other such that: 

  If it is true that:           a   ≥   b’  ;   throughout the domain of (p)                    # Prop. (3.4a) 

 Then it also must be true that:    a’  ≥   b’  ;   throughout the domain of (1 – p) 

 Therefore: a’   ≥   b’                               
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Proposition 4:   1. P(G)  ≥  P(MS, G) / b’  =  (g2)*P(MS) / b 

   2. a. 0.010    ≤   (g2)*P(MS) / b   ≤   P(G)   ≤   2*P(MS) / b  =  0.022 

    b. 0.067  =  b/2   ≤   z    ≤   b’    ≤  0.143 

    c.            g*P(MS) / zmax   ≤  P(G)    ≤   2*(1.86)*{P(MS) / P(MS│MZMS)} 

    d. 0   ≤   P(MS│G–)  ≤  0.000092 ;     P(MS│G)  ≥  728*P(MS│G–) 

Proof of Proposition 4.1:  

  P(MS, G) = g*P(MS);   m = 1.86 ;   b’ =  b/g ;  and:   b’ ≥  z             # Props. (1.1), (1.4a), (1.6) & (2.1)      

     (1)       Thus: P(G)  =  P(MS, G)/ z   ≥   P(MS, G)/ b’  =  (g2)*{P(MS) / b)} =  (g2)(1.86)*{P(MS) / P(MS│ MZMS)}    

Proof of Proposition 4.2: 

4.2a.   a  = P(MS, G) / P(G1)  =   P(MS, G) / p*P(G)   ≥     b’              # Prop. (3.4a) 

 so that:  P(G)  ≤  {P(MS, G) / b’} / p    

 Similarly: P(G)  ≤  {P(MS, G) / b’} / (1 – p)     # From Prop. (3.4b) 

     (2) Therefore: P(G) ≤ {P(MS, G) / b’} / p  ≤ {P(MS) / b} / p  # P(MS) ≥ P(MS, G);   b’ ≥  b  

     (3) and:  P(G) ≤ {P(MS, G) / b’} / (1 – p)  ≤ {P(MS) / b} / (1 – p) # P(MS) ≥ P(MS, G);   b’ ≥  b 

 Because:  (0  ≤  p  ≤  1) ;  one of the following three statements must be true: 

     (4)   (#1)      p  >  0.5  ;        (#2)       (1 – p)  >  0.5  ;        or:       (#3)      p  = (1 – p)  =  0.5 

 Thus, from Eqs. (2 & 3), together with requirement of Eq. (4) & Prop. (4.1), it follows that:  

     (5)  P(MS, G) / b’  ≤   P(G)  =  P(MS, G) / z  ≤  2*P(MS) / b  =  2*(1.86)*{P(MS) / P(MS│MZMS)} 

 Together with Eq. (1) this becomes: 

     (6)  (g2)(1.86)*{P(MS) / P(MS│G, MZMS)}   ≤   P(G)   ≤   (3.72)*{P(MS) / P(MS│MZMS)} 

 Because P(MS) and P(MS│MZMS) are directly observed parameters (Table 2), together with  

 Props. (1.4a), (4.1), & (5.2b), then Eq. (6) yields the estimate:     

      {(0.94)2(1.86)(0.0015)}/ (0.25) = 0.010  ≤  P(G)  ≤  {(3.72)(0.0015)}/ (0.25) = 0.022         #  0.94  ≤  g  ≤  1 

 Consequently, in MS, the maximum possible value for P(G) in the general population is 2.2%.  A very 

 similar range-estimate for P(G) is derived from epidemiological data obtained from different populations 

 throughout North America and Europe (Table 7). 
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4.2b. In addition, rearrangement of Eq. (5), together with Eq. (5) of Prop. (2.1), yields:   

     (7)  b’   ≥   P(MS│G)  =  z   ≥   b’/2    ≥    b/2   =  0.067     # b’ ≥  b 

 Again using the Prop. 5.2b estimate that: 0.94   ≤   g   ≤   1 

 leads to:  0.134   ≤   b’  =  b/g    ≤   (0.134 / 0.94)   =   0.143 

     (8) and, thus 0.067   ≤   z    ≤   b’    ≤  0.143 

 In addition, Eq. (5) of Prop. (2.1) can be solved such that:  

  b’  =    z  +  (σzi
2) / z  ;       or: σzi

2  =  z*(b’ –  z)

 Therefore, using the Eq. (8) range-estimate for (z), yields the estimate that:  

      (9)  0   ≤   σzi
2  ≤  0.0051  ;   or equivalently:   0   ≤    σzi  ≤  0.071 

4.2c. A narrower range-estimate for (z), and, therefore, also for (σzi
2) is possible.  # Props. (7.1a) & (7.1b) 

    (10) Thus, we note that:  P(G)  =  P(MS, G) / z   ≤  P(MS) / z  # By definition 

    (11) and that, under any circumstance:  b/2   ≤   z   ≤   b’        # Eq. (7) 

 Defining (zmin) and (zmax) as the minimum and maximum levels of the range-estimate for (z) and using the 

 range-estimate in Eq. (11), then: zmin  =   b/2 ;   and: zmax  =   b’ 

 and substitution of these into Eq. (10) yields:          g*P(MS) / zmax   ≤   P(G)   ≤     P(MS) / zmin 

    (12) or: (g2)*P(MS) / b   ≤   P(G)   ≤    2*P(MS) / b    # Which is equivalent to Eqs. (5 & 6) 

 However, because the circumstance in which:       z   =   b’  ;   implies a zero variance, this estimate is almost 

 certainly too high. Therefore, the most useful form for Eq. (12) to take is: 

    (13)  (g)*P(MS) / zmax   ≤   P(G)   ≤    2*(1.86)*{P(MS) / P(MS│MZMS)} 

4.2d. From Prop. (5.2b): P(MS, G–)  ≤  (0.06)*P(MS)  =  (0.06)(0.0015)  =  0.00009 

 Consequently:  P(MS│G–)  =  P(MS, G–) / P(G–)  ≤  (0.00009 / 0.978)  =  0.000092 

               Thus:                                    0  ≤  P(MS│G–)  ≤  0.000092 

               And therefore:       P(MS│G)   ≥  (0.067 / 0.000092)*P(MS│G–)  =  728*P(MS│G–)
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Proposition 5:  1. g1 / g2  ≤  t/s 

    g   =  Ag1  +  (1 – A)g2   

   2. a. For gender and HLA: g1  ≥   g2    

    b. 0.94    ≤    g   ≤   1 ;     so that :   0.134  =  b    ≤   b’    ≤   0.143 

    c. For gender and HLA: s/b    ≤   s’/b’   ≤   (1.04)(s/b) 

3. P(G│MS)  =  g  >>  0.77  

New Definitions for Proposition 5: 

The set G can be partitioned into two disjoint subsets (Gx+ and Gx–) based upon whether or not the susceptible person          

carries a specific genetic characteristic (Gx).  Moreover, as in Prop. (2), the labeling convention adopted is that:  

  P(MS│G, Gx+)  ≥  P(MS│G, Gx–) 

Because: P(G, Gx+│MS)  +  P(G, Gx–│MS)  =  P(G│MS)  =  g  ;       therefore all partitions estimate the same (g). 

1. (F), (M)   =   sets of women (F) and men (M) 

 (HLA+), (HLA–)   =   sets of DRB1*1501 carriers (HLA+) and non-carriers (HLA–) 

2. g01 =   P(G│Gx+)  ;    g02 =   P(G│Gx–)       

3. t’  = P(MS│G, Gx+, IGMS)  =  P(MS│Gx+, IGMS) / P(G│Gx+, IGMS)  =   t/g1    # As in Props. (1.5b) & (1.6) 

 s’  = P(MS│G, Gx–, IGMS)  =  P(MS│Gx–, IGMS) / P(G│Gx–, IGMS)  =   s/g2   # As in Props. (1.5b) & (1.6) 

4. A0  =  P(Gx+)  ;     R0  =  P(Gx+│G)    

 A  =   P(Gx+│IGMS)  =  P(Gx+│MS)  R  =   P(Gx+│G, IGMS)  =  P(Gx+│G, MS) 

 A1 =   P(Gx+│MS, IGMS)     R1 =   P(Gx+│MS, G, IGMS)   

Data for Proposition 5:          # For the Gender and HLA partitions;  From Tables (2 – 6) 

 P(F)  =  A0  =  0.5        P(HLA+)  =  A0  =  0.24 

 P(F│IGMS)  =  P(F│MS)  =  A  =  0.68  P(HLA+│IGMS)  =  P(HLA+│MS)  =   A  =  0.55 

 P(F│MS, IGMS)  =  A1 =  0.92   P(HLA+│MS, IGMS)  =  A1  =  0.57 
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Proof of Proposition 5.1:  

  t’  ≥  b’  ≥  s’ ;     t’  =  t/g1  ;  and:   s’  =  s/g2         # Assumption (A7), Prop. (2.3) & as in Prop. (1.6) 

     (1) Thus: g2/g  ≥  s/b    ;    s’/b’   =  (g/g2)(s/b) ;         g1/g  ≤  t/b    ;        and:          g1/g2  ≤   t/s   

    P(G│MS)   =   P(Gx+│MS)*P(G│MS, Gx+)   +   P(Gx–│MS)*P(G│MS, Gx–) 

     (2) or: g   =   Ag1  +  (1 – A)g2                    # Because: 1 – A = P(Gx–│MS) 

 and: b   =    P(Gx+│IGMS)t  +  P(Gx–│IGMS)s    # Assumption (A4) ; Prop. (1.4b) 

 so that: b’  =   P(Gx+│IGMS)*(g1/g)t’  +  P(Gx–│IGMS)*(g2/g)s’    # Prop. (1.6) 

 Rearranging Eq. (2) yields:      A  =  (g – g2) / (g1 – g2)  ≥  0  ;     Therefore, one of three relationships must hold: 

     (3)  (#1)      g1  >  g   >   g2  ;       (#2)      g1  <  g  <   g2  ;     or:     (#3)     g1  =  g  =   g2 

Proof of Proposition 5.2:       

5.2a P(MS, G–)   =  P(MS, Gx+, G–)  +  P(MS, Gx–, G–)            # (Gx+, G–) & (Gx–, G–) partition (G–) 

 P(Gx+, G–)  =  P(Gx+) – P(Gx+, G)  ≥  P(Gx+) – P(G)         # (G) & (G–) partition the general population 

 and: P(Gx–, G–)  =  P(Gx–) – P(Gx–, G)  ≥  P(Gx–) – P(G)       # (G) & (G–) partition the general population 

 From Prop. (4.2a): P(G)  =  P(G, Gx+)  +   P(G, Gx–)   ≤   0.022 

 Consequently: A0  =  P(Gx+)   ≥   P(Gx+, G–)  =  A0  –  P(Gx+, G)   ≥   A0  –  0.022         # See Definition (4) 

  and: (1 – A0)  =  P(Gx–)   ≥   P(Gx–, G–)  =  (1 –  A0)  –  P(Gx–, G)   ≥   0.978  – A0 

     (4) As a result: 1   ≥   1 – g01   =   P(G–│Gx+)   ≥   (A0 – 0.022) / A0            # See Definitions (2) & (4) 

     (5)  and: 1   ≥   1 – g02   =   P(G–│Gx–)   ≥   (0.978 – A0) / (1 – A0)         # See Definitions (2) & (4) 

     (6) Also: 1 –  g1   =   P(G–│MS, Gx+)   =   P(MS, G–│Gx+) / P(MS│Gx+)           # See Definitions (2) & (4) 

     (7) where: P(MS, G–│Gx+)  =  P(G–│Gx+)*P(MS│G–, Gx+)  =  P(G–│Gx+)*P(MS│G–)              # Prop. (1.2a) 

     (8) and: P(MS│Gx+)  =  P(MS, Gx+) / P(Gx+)  =  {P(Gx+│MS)*P(MS)} / P(Gx+) 

 Thus: 1 – g1  =  {P(Gx+) / P(Gx+│MS)}*P(G–│Gx+)*{P(MS│G–) / P(MS)}                     # Eqs. (6 – 8) 

 or, equivalently:  1 – g1  =  (A0 / A)*(1 – g01)*{P(MS│G–) / P(MS)} 

 and similarly:   1 – g2  =  {(1 – A0) / (1 – A)}*(1 – g02)*{P(MS│G–) / P(MS)}
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 Rearranging these equations (when:  g01 , g02 , g1 , and g2  < 1), yields:   

     (9)  (1 – g1)  /  {(A0 / A)*(1 – g01)}  =  (1 – g2) / {[(1 – A0) / (1 – A)]*(1 – g02)} 

 For convenience, we will define the term (B), such that: 

    (10)  B  =  {(A0 / A)*(1 – g01)} / {[(1 – A0) / (1 – A)]*(1 – g02)}  =  (1 – g1) / (1 – g2) 

  so that Eq. (10) can be re-written as: 1 – g1  =  (1 – g2)B   

     (11)  or, with rearrangement:  g1   =   B(g2)  +  (1 – B) 

 Thus: g1 ≥  g  ≥  g2    ;  if and only if: B  ≤  1 

 Therefore, for any complex genetic disorder, we can estimate the permissible values of (g) using experimental         

 data. Thus, the constraints of Eqs. (4 & 5), together with Eq. (9), combine to yield: 

     (12)         {(A0 –  0.022)/A}*{(1 – A)/(1 – A0)}   ≤   B   ≤   (A0/A)*{(1 – A) / (0.978 – A0)}  

 As noted in the definitions, the same value of (g) will be estimated, regardless of which partition of (G) is                    

 chosen. Moreover, the parameter (g) can be estimated from the range of possible values that the parameter (B)                    

 can take  and, in turn, this range can be estimated from directly-observed or directly-derived data.  If the genetic         

 characteristic (Gx) chosen to partition (G) is not associated with MS, then: 

   P(G│Gx+)  =  P(G)  ;   and: P(MS│G, Gx+)  =  P(MS│G)     

 in which case: P(MS, G│Gx+)  =  P(MS, G│Gx–)   =   P(MS, G)      # Prop. (1.7d) 

 so that:  g1   =   g2    =   g 

 and, thus:       B  =  1   ;  for all possible values of (g)                  # Eq. (10) 

 Consequently, in this situation, Eq. (11) provides no information about the value of (g).   

 By contrast, if the genetic characteristic (Gx) that is chosen to partition (G) is associated with MS (Prop. 1.7),      

 then the same estimate of (g) will be given by any such partition, in which case:  

  when:   B  ≠  1;     then:   g1   =   g2   ;  if and only if:     g  =  1                           # Eqs. (3) & (11) 

 In the circumstances of MS, we have (available) observed data from two different partitions.
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5.2a1. Thus, for the gender partition (Gx+ =  F), Eqs. (4 & 5) yield: 

  1  ≥  1 – g01  =  P(G–│F)   ≥  (0.5 – 0.022) / 0.5  =  0.96 

       1  ≥  1 – g02  =  P(G–│M)  ≥  (0.5 – 0.022) / 0.5  =  0.96 

 Substituting these values, and the data from Tables 2 & 6, into Eq. (12) yields the range of:  

       0.450  ≤  B ≤  0.492 

 In this case, from Table 6 and from Eqs. (1 & 11), therefore:  

   1   ≤  g1/g2  =  B  +  (1 – B) / g2   ≤    t/s   =  (0.183 / 0.036)   =   5.08 

  or: g2   ≥  (1 – B) / {t/s  –  B)}   

       So that:          g2   ≥   (1 – 0.492) / (5.08 – 0.492)  =  0.111  ;   and, thus, from Eq. (11):        1  ≥   g1  ≥   0.56       

    (13) Eq. (2) then gives the estimate of:      0.42  ≤   g   ≤   1 

5.2a2. Similarly, for the HLA partition (Gx+  =  HLA+), Eqs. (4 & 5) yield: 

  1  ≥  1 – g01  =  P(G–│HLA+)  ≥  (0.24 – 0.022) / 0.24  =  0.91 

       1  ≥  1 – g02  =  P(G–│HLA–)  ≥  (0.76 – 0.022) / 0.76   =   0.97 

 Substituting these values, and the data from Tables 2–6, into Eq. (12) yields the range of:  

       0.235  ≤  B ≤  0.266 

 In this case, from Table 6 and from Eqs. (1 & 11), therefore: 

   1   ≤  g1/g2  =  B  +  (1 – B) / g2   ≤    t/s   = (0.166 / 0.154)  =  1.08 

                       or:                g2   ≥  (1 – B) / {t/s  –  B)} 

 So that:  g2   ≥ (1 – 0.266) / (1.08 – 0.266)  =  0.90   ;  and, thus, from Eq. (11):       0.97  ≤  g1   ≤   1 

 Eq. (2) then gives the estimate of:       0.94  ≤   g   ≤   1 

 If:       P(HLA+│F, G)  >   P(HLA+│M, G)             # See Table (2) & Prop. (6.4d) 

 Then, because: P(MS│F, G)     >>  P(MS│M, G) ;                  # Prop. (6.2b) 

 our estimated (t/s) will be artificially high and, consequently, the estimate of (g  ≥ 0.94) will be too low. 

5.2b. Because both partitions must estimate the same parameter (g), therefore, the only solution for (g) that is        

 consistent with both estimates is: 0.94  ≤  g  ≤   1 ;   

    (14) Consequently:     b  =  0.134   ≤    b’   ≤   (0.134) / (0.94)   =  0.143  
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5.2c. Combining Eqs. (2 & 11) yields: 

   (15)  g2  ≥  {0.94 – (1 – B)A} /  (AB + 1 – A) 

 For (Gx+ = F), Eqs. (11 & 15), together with the Prop. (5.2a1) estimate for B, yields: 

  P(G│M, MS)  =  g2  ≥  0.90  ;       and: P(G│F, MS)  =  g1  ≥  0.96 

 Thus, for both (Gx+ = F) and (Gx+ = HLA+): 1    ≤   g/g2  ≤   (0.94 / 0.90) = 1.04   

   (16)  and, therefore, from Eq. (1):      s/b    ≤   s’/b’   ≤   1.04(s/b)          # For both of these partitions 

Proof of Proposition 5.3:   

5.3a. From Prop. (1.3) & Assumption (A3): P(MS, G│MZMS)  >  (0.90)*P(MS│MZMS)  

 A population-wide survey of monozygotic twins in Finland identified 3,083 monozygotic twin-pairs     

 born prior to 1957.31 The authors reported that a total of 21 persons from this cohort had a diagnosis of MS                    

 and, of these, 10 pairs (3 concordant for MS) agreed to participate in the study. Using this information,                    

 together with Prop. (1.3), we can estimate the amount of genetic MS by the prevalence of concordant twins in             

 this MZ-twin population.  Thus:   

  P(MS, G, MZMS)   >   (0.90)*(3 / 10)*(21)*(1 / 3,083)  =  0.00184  

 Because this estimate exceeds the reported prevalence of MS in Finland,30 this observation also supports the     

 notion that most MS cases develop through the genetic pathway.  

5.3b. Even estimating the prevalence of MS in Finland from this particular cohort (excluding the second twins of         

 concordant pairs) yields: 

  P(MS)  =  P(MZMS)  =  {21 –  (3 / 10)*(21)} / {(2)*(3,083) –  (3 / 10)*(21)}  =  0.00239   

 Thus, the minimum estimated percentage of genetic MS in Finland (from this cohort) is: 

  P(MS, G, MZMS) / P(MZMS)  >  (0.00184 / 0.00239)  =  0.77 

 However, because the prevalence of “genetic” MS should be far greater than the prevalence of just the        

 concordant cases, therefore:   

   P(G│MS)  =  P(MS, G) / P(MS)  >>  P(MS, G, MZMS) / P(MZMS)  =  P(MS, G│MZMS) 

 and, thus: P(G│MS)  =  g  =  P(G│ MZMS)  >>  0.77   
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Each of the twins in this study  (3,083)  has the population probability of getting MS provided they get an adequate environmental exposure. The genetic makeup of this twin population is assumed to reflect the general population (each genotype sampled twice and each is given a chance to get the proper environmental exposure).  Therefore, our estimate of P(MS) from this population might be estimated by the number of cases of MS divided by the total number of individuals who had the chance to develop MS or:

P(MS)  =  (# MS cases) / {2*(3,083)}  =  (# MS cases) / (6,166)

However, for twins of an MS patient, the extra observation (i.e., in their twin) is not estimating P(MS). Rather it is estimating P(MS|IGMS), which is substantially higher than P(MS) and, therefore, these patients need to be excluded. Based on finding (3/10) concordant pairs out of 21 cases, the expected number of these excluded twins are:

(3/10)*21  =  6.3
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Proposition 6:  1. a. R1  ≥   R  ≈  A ;       # for all partitions 

    b. If only Mechanism (1) occurs: s’/b’  =  1 

    c. If Mechanism (2) occurs at all: s’/b’  <  1 

   2. 0.28  ≤  P(F│G)  ≤  0.49 

    (2.3)*P(MS│G, M)  ≤  P(MS│G, F)  ≤  (5.4)*P(MS│G, M)  

    0   ≤   σzj
2  ≤  0.009   ;      and: 0   ≤   σzk

2  ≤  0.0004 

   3. (3.72)*P(G│HLA–)   ≤   P(G│HLA+)  ≤  (3.87)*P(G│HLA–)   

    P(MS│G, 2HB+)  ≈  P(MS│G, 1HB+)  ≈  P(MS│G, HLA–)  ≈  P(MS│G) 

   4. Each DRB1*1501 allele affects susceptibility independently 

Definitions:  

1. (HLA–), (1HB+), (2HB+),  =  sets of individuals who carry zero (HLA–), one (1HB+), or  two (2HB+) copies  

 of the DRB1*1501 allele ;     Also:    (1HB–)  =  set of individuals who carry one “non-DRB1*1501” allele   

2. MAF  =  mean allelic frequency (defined broadly) ;  HWE  =  Hardy Weinberg Equilibrium 

3. Wp , Wq , Wpq     =   absolute fitness levels for the different genotypes. 

 wp , wq , wpq        =   normalized fitness levels for the different genotypes.        

 w  =  (wp / wq) ½  > 1  = “relative normalized fitness” at HWE. {appropriate definitions for other circumstances} 

Mechanisms of Enrichment: 

Only two mechanisms (see Prop. 1.7) can enrich Gx+ in an (MS) or an (MS, IGMS) population. These are:  

1) a MAF change such as:   P(Gx+│G)  >  P(Gx+) ;    or:    P(G│Gx+)  >  P(G│Gx–) 

and:  2)     a Penetrance change such as:     P(MS│G, Gx+)  >  P(MS│G, Gx–) 

     or: P(MS│G, Gx+, IGMS)  >  P(MS│G, Gx–, IGMS) 

Proof for Proposition 6.1:    

6.1a.  R1  =   P(Gx+│MS, G, IGMS)  =  P(Gx+, G, IGMS)*P(MS│G, Gx+, IGMS) / P(MS, G, IGMS) 

        =   R*{P(MS│G, Gx+, IGMS) / P(MS│G, IGMS)}  =  R*(t’/ b’)  

 A comparable analysis leads to:    (1 – R1)  =  (1 – R)*(s’/ b’)   

     R  =  R0*{P(MS│G, Gx+) / P(MS│G)} 

    and: (1 – R)  =  (1 – R0)*{P(MS│G, Gx–) / P(MS│G)} 
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 Three (Gx+) enrichment-stages occur for twin-populations: the 1st in going from the set (Gx+) to (Gx+, G); 

 the 2nd in going from the set (Gx+, G) to (Gx+, G, MS) {or equivalently to (Gx+, G, IGMS)}; and the 3rd in                  

 going from the set (Gx+, G, IGMS) to (Gx+, G, MS, IGMS).  Odds ratios (ORs) associated with these stages are:  

  OR1  =  {R0 / (1 – R0)} /{A0 / (1 – A0)}        # 1st stage 

   OR2  =  {R / (1 – R)} / {R0 / (1 – R0)}  =   E(zj) / E(zk)  =  zt / zs    # 2nd stage 

 and: OR3  =  {R1 / (1 – R1)} / {R / (1 – R)}  =  t’/ s’     # 3rd  stage 

 The first of these enrichments (OR1) is due to Mechanism (1) whereas the second and third (OR2 and OR3) are      

 due to Mechanism (2). Because, from Prop. (5.2b):    g  ≈  1  ;      therefore:   A  ≈   R ;    and:       A1  ≈   R1  

 In this case, both (OR3) and the combination of the first two enrichment stages (OR1/2) can be directly observed.  

     (1) Thus: OR1/2  =   (OR1)*(OR2)  =  {R / (1 – R)} / {A0 / (1 – A0)} ≈  {A / (1 – A)} / {A0 / (1 – A0)}  

     (2) and: OR3  =   t’/ s’   ≈  {A1 / (1 – A1)} / {A / (1 – A)} 

     (3) Based on Prop. (2.3): OR3  =  t’/ s’   ≥   E(zj) / E(zk)  =   zt / zs   =   OR2   

 Because:  t’  ≥   s’  ;      then: R1  ≥   R     # Assumption (A7) & Prop. (2.3)  

6.1b. If only Mechanism (1) accounts for the Gx+ enrichment in MS patients.  

      P(MS│G, Gx+)   =   P(MS│G, Gx–)  =   P(MS│G)                   # Mechanism (2) does not operate 

 so that:     P(MS│G, Gx+, IGMS)  =  P(MS│G, Gx–, IGMS)  =  P(MS│G, IGMS)   # Assumption (A7) & Prop. (2.3) 

 This second expression is the same as:  s’  =   b’      or:  s’/b’  =  1 

 For example, the data for the HLA partition, yields the estimate of:   

  0.97  =  s/b   ≤   s’/b’  ≤  1.04(s/b)  =  1              # Eq. (16) of Prop. (5.2c) & Table (6) 

Thus, most of the DRB1*1501 enrichment in MS must be due to Mechanism (1).  

6.1c. If Mechanism (2) accounts for even a portion of the Gx+ enrichment.  

       P(MS│G, Gx+)  >  P(MS│G)  >  P(MS│G, Gx–)                       # Mechanism (2) does operate 

 so that:      P(MS│G, Gx+, IGMS)  >  P(MS│G, IGMS)  >  P(MS│G, Gx–, IGMS)     # Assumption (A7) & Prop. (2.3) 

 This second expression is the same as:  s’  <  b’      or:  s’/b’  <  1 

 For the Gender partition, using the Table 6 data, together with Eq. (16) of Prop. (5.2c), yields:  

  s/b  =  0.27   ≤   s’/b’  ≤   1.04(s/b) =  0.28   <  1 

 So that, at least some of the Female enrichment in MS must be due to Mechanism (2).
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Proof of Proposition 6.2:  

Gender-Status 

6.2a. The development of Prop. (4.2) would be unaltered if men and women were to be considered separately. 

 Therefore, from Table (6) it is the case that: 

  t   =   P(MS│F, IGMS)  =  0.183 ;         and:  s   =   P(MS│M, IGMS)  =  0.036   

 Using the data in Tables 2 & 6: 

       P(MS│F)  =  P(F│MS)*P(MS) / P(F)    ≈   (0.68)(0.0015) / (0.5) =  0.00204 

       P(MS│M) = P(M│MS)*P(MS) / P(M)  ≈   (0.32)(0.0015) / (0.5) =  0.00096 

 Then from Eqs. (1 & 5) of Prop. (4), without making any assumptions, it must be the case that:   

     (4) For women: (g1
2)*P(MS│F) / t     ≤   P(G│F)    =   P(MS, G│F) / zt    ≤   (2)*P(MS│F) / t    

     (5) And for men: (g2
2)*P(MS│M) / s   ≤   P(G│M)   =   P(MS, G│M) / zs   ≤   (2)*P(MS│M) / s 

 Substituting into Eqs. (4 & 5), the data from Tables (2) & (6), yields: 

     (6) For women:         (0.00204 / 0.183)*(0.96)2  =  0.010   ≤  P(G│F)   ≤  0.022  =  2*(0.00204 / 0.183)  

     (7) For men: (0.00096 / 0.036)*(0.90)2  =  0.022   ≤  P(G│M)  ≤  0.053  =  2*(0.00096 / 0.036)

 See Prop. (6.2d) for an alternative derivation of this relationship and also Eq. (10); Prop. (7.1a) for a 

 minor adjustment to these range estimates. The lack of overlap of these predicted ranges indicates that   

 men are more likely than women to be genetically susceptible to getting MS.   

 Also, because: P(F)  ≈  P(M)  ≈  0.5 ;      then, also:     P(M│G)   ≥   P(F│G) 

               and, thus:             P(G│M)   ≥   P(G)   ≥   P(G│F)

6.2b1. Moreover, using logic directly analogous to that for Eq. (6) in Prop. (4.2a) & Prop. (6.2a) & the Prop. (5.2c)  

 estimates for (g1) and (g2), rearrangement of Eqs. (4 & 5) yields: 

     (8)  0.183 / (0.96)  =  0.191   ≥   t’   ≥   P(MS│F, G)   =  zt   ≥   t’/2    ≥    t/2   =  0.092 

     (9) and: 0.036 / (0.90)  =  0.040   ≥   s’   ≥   P(MS│M, G)  =  zs   ≥   s’/2    ≥    s/2   =  0.018 

 Because there is no overlap between these two ranges, we conclude that, for this partition, it must be          

  the case that: t’  >   b’  >   s’  
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6.2b2. From Tables (2) & (6), as well as Prop. (6.1a), the odds ratios for the 2nd and 3rd enrichment               

 stages (OR2 and OR3) are: 

    (10)  OR2  =  {P(F│G, IGMS) / [1 – P(F│G, IGMS)]} / {P(F│G) / [1 – P(F│G)]}  =   zt / zs 

    (11)    and: OR3  =   t’/s’   ≈  {P(F│MS, IGMS) / [1 – P(F│MS, IGMS)]} / {P(F│MS) / [1 – P(F│MS)]}  =  5.4 

 Using Eqs. (3, 10 & 11), together with the results of Eqs. (8 & 9), yields: 

  OR3  =   t’/s’   ≈   5.4   ≥   OR2  =   zt / zs    ≥   (0.092) / (0.040)  =    2.3               # Eq. (3) & Prop. (2.3) 

 Consequently, from these analyses, we conclude that there is a large penetrance-imbalance for gender, in both  

 the 2nd and 3rd enrichment-stages.  

6.2c. For gender (Gx+ =  F): P(G│F)   ≤   P(G)            # Prop. (6.2a) 

   Therefore: P(G│F)  +  P(G–│F)   =  1   ≤   P(G)  +   P(G–│F) 

  so that:  P(G–│F)   ≥   P(G–)     # 1 – P(G)  =  P(G–)  

  Therefore: P(F, G–)    ≥   P(G–)*P(F)  =  {1 – P(G)}*P(F)     

 Similarly:  P(G–│M)  ≤   P(G–) 

  and:  P(M, G–)   ≤   P(G–)*P(M) 

 Therefore: P(F)  =  0.5  ≥  P(F, G–)  ≥  P(G–)*P(F)  ≥  (1 – 0.022)(0.5) = 0.489       # Prop (4.2a) 

 Because: P(M, G–)  +  P(F, G–)   =   P(G–)  ≥  0.978 

   P(M)  =  0.5   ≥  P(M, G–)  =  P(G–)  –  P(F, G–)   ≥   0.478   

 From Prop. (1.2a), it follows that: 

  P(F, G–│MS)   =  {P(F, G–)*P(MS│F, G–)}/ P(MS)     =   {P(F, G–)*P(G–│MS)} / P(G–) 

 and: P(M, G–│MS)  =  {P(M, G–)*P(MS│M, G–)}/ P(MS)   =   {P(M, G–)*P(G–│MS)} / P(G–) 

 Therefore:   1  ≥  P(M, G–│MS) / P(F, G–│MS)    ≥   (0.478) / (0.5)   =   0.96 

 so that:  P(F, G–│MS)   ≈   P(M, G–│MS) 
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6.2d. Alternatively, we can use the relationship:           P(G│IGMS)   =   g   ≥   0.94  # Prop. (5.2b) 

 together with:  P(F, G–│IGMS)  ≈  P(M, G–│IGMS)   ≤  (1 – 0.94)/2  =  0.03      # Props. (1.2a), (5.2a1) & (6.2c) 

 to yield:   P(F│G, IGMS) = {P(F│IGMS) – P(F, G–│IGMS)}/ P(G│IGMS)   ≤   (0.68 – 0.03) / 0.94  = 0.69 

 Therefore: 0.68  ≤  P(F│G, IGMS)  ≤  0.69 

 Using this range estimate for P(F│G, IGMS), rearranging Eq. (10), using the estimate of (zt / zs) from Prop. (6.2b2), 

 and substituting the values from Tables (2 & 6), yields: 

 {P(F│G) / [1 – P(F│G)]}  ≥  (0.68 / 0.32) / (5.4)  =  0.394 

and: {P(F│G) / [1 – P(F│G)]}  ≤  (0.69 / 0.31) / (2.3)  =  0.967   

    (12) or, with rearrangement: 0.28  ≤  P(F│G)  ≤  0.49   ;        and:   0.51  ≤  P(M│G)  ≤  0.72 

             so that: (1.04)*P(F│G)   ≤   P(M│G)   ≤   (2.57)*P(F│G) 

also: (0.022)(0.28) / 0.5  =  0.012  ≤  P(G│F)  =   P(G)*P(F│G) / P(F)    ≤   (0.022)(0.49) / 0.5  =  0.022 

 (0.022)(0.51) / 0.5  =  0.022  ≤  P(G│M) =  P(G)*P(M│G) / P(M)  ≤   (0.022)(0.72) / 0.5  =  0.032 

    (13) and: (2.3)*P(MS│G, M)   ≤   P(MS│G, F)   ≤   (5.4)*P(MS│G, M)                             # Props. (6.1a) & (6.2b2)  

 

 6.2e. From Eqs. (8 & 9): 

      0.092   ≤   zt    ≤   t’    ≤  0.191 ; and: 0.018   ≤   zs    ≤   s’    ≤  0.040 

 Because: t’  =  zt  +  (σzj
2) / zt  ;  and: s’  =  zs  +  (σzk

2) / zs         # Prop. (2.1) 

 therefore: σzj
2   =  (t’ – zt)(zt)    ; and: σzk

2   =  (s’ – zs)(zs) 

    (14) and, thus: 0   ≤   σzj
2  ≤  0.009   ;      and: 0   ≤   σzk

2  ≤  0.0004                 

 or, equivalently:             σzj  ≤  0.095  ; and: σzk  ≤  0.02 
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Proof of Proposition 6.3:   

HLA-Carrier Status 

6.3a. Again, because the development of Prop 4.2 is unaffected by considering HLA+ and HLA– individuals 

 separately, therefore, we can define (see Table 5) the quantities: 

   t   =   P(MS│HLA+, IGMS)   =    0.139   

  and: s   =   P(MS│HLA–, IGMS)   =    0.129 

 Using the data in Tables (2) & (5): 

       P(MS│HLA+)  =  P(HLA+│MS)*P(MS) / P(HLA+)  =  (0.55)(0.0015) / (0.24)  =  0.0034 

       P(MS│HLA–)  =  P(HLA–│MS)*P(MS) / P(HLA–)   =  (0.45)(0.0015) / (0.76)  =  0.0009 

 Therefore, from Eqs. (1 & 5) of (Prop. 4.2a), even without Assumptions (A7), it must be the case that:   

  For HLA+: (g1
2)*P(MS│HLA+)  / t   ≤   P(G│HLA+)   ≤   (2)*P(MS│HLA+) / t  

  And for HLA–: (g2
2)*P(MS│HLA–)  / s   ≤   P(G│HLA–)   ≤   (2)*P(MS│HLA–) / s     

 Substituting into these equations the data from Tables 2 & 6, yields: 

    (15)     For (HLA+): (0.0034 / 0.139)*(0.97)2   =  0.023    ≤   P(G│HLA+)  ≤  (2)(0.0034 / 0.139)    =  0.049 

    (16)     For (HLA–): (0.0009 / 0.129)*(0.90)2   =  0.0057  ≤   P(G│HLA–)  ≤  (2)(0.0009 / 0.129)    =  0.014 

 See also Eq. (10); Prop. (7.1a) for an adjustment to these range estimates.  

 Again, the lack of any overlap between these predicted ranges, indicates that HLA+ individuals are more             

 likely than HLA– individuals to be genetically-susceptible to MS. 
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6.3b. The observations from Tables (2) & (5) for the HLA partition (Gx+  =  HLA+) also support  this notion.        

 Thus P(HLA+│IGMS)  =  A  =  0.55  ≈  0.57  =  A1 =  P(HLA+│MS, IGMS)                       # Tables (2) & (5) 

 where: A ≈  R ;    and: A1 ≈  R1  ;      so that, for this partition:      t’  ≈   b’  ≈   s’ # Props. (1.5)  & (5.2b)  

 Also from Tables (2 & 5), the OR for the 3rd enrichment-stage (OR3) is: 

       OR3  = {P(HLA+│MS, IGMS) / [1–P(HLA+│MS, IGMS)]}/{P(HLA+│MS) / [1–P(HLA+│MS)]}  =  1.06 

 Thus, there is little or no discernable penetrance-imbalance in the 3rd enrichment-stage for HLA-carrier status. 

 From Prop. (2.3):  1  ≤  OR2   ≤   1.06  ; or: zt   ≈   zs  ≈    z        

Together with (g  ≥ 0.94) from Prop. (5.2b) and substituting the values from Tables (2) & (5) yields: 

 1  ≤  {P(HLA+│G) / [1 – P(HLA+│G)]}  ≤  {(0.55 / 0.45) / 1.06}  =  1.15 

or, with rearrangement: 0.54  ≤  P(HLA+│G)   ≤   0.55  ;  and: 0.45  ≤   P(HLA–│G)   ≤   0.46 

   0.050 = (0.022)(0.54) / 0.24  ≤  P(G│HLA+) = P(G)*P(HLA+│G) / P(HLA+)  ≤  (0.022)(0.55) / 0.24 = 0.050 

   0.013 = (0.022)(0.45) / 0.76  ≤  P(G│HLA–) = P(G)*P(HLA–│G) / P(HLA–)   ≤  (0.022)(0.44) / 0.75 = 0.013 

 Also: P(G│HLA+)  =  {[P(HLA–) / P(HLA+)]*[P(HLA+│G) / P(HLA–│G)]}*P(G│HLA–)   

     Thus: P(G│HLA+)   ≥   (0.76 / 0.24)*(0.54/ 0.46)*P(G│HLA–)  =  (3.72)*P(G│HLA–) 

 and: P(G│HLA+)   ≤   (0.76 / 0.24)*(0.55/ 0.45)*P(G│HLA–)  =  (3.87)*P(G│HLA–) 

 Also: P(MS│G, HLA–)   ≤   P(MS│G, HLA+)   ≤   (1.06)*P(MS│G, HLA–)          # Prop. (6.1a) 

 This confirms that the vast majority of the enrichment of HLA+ status in MS results from Mechanism (1).    

 Also, if gender and HLA status are either independent or if:      P(F│G, HLA+)   ≥   P(F│G)  

 Then, the prevalence of HLA+ women is expected to rise at each enrichment stage, so that:  

     P(F│G, HLA+)  ≥  0.28                 # Eq. (11) 

     P(F│G, HLA+, MZMS)  ≥  0.68    # Table (2) 

            and: P(F│G, HLA+, MS, MZMS)  ≥  0.92       # Table (2)
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6.3c. Homozygous DRB1*1501-Status 

 Compared to individuals who lack the DRB1*1501 allele (HLA–), there is an enrichment of individuals who                   

 are homozygous for this allele (2HB+) in an MS population, and this enrichment is much greater than it is for                

 individuals who carry one copy of this allele (1HB+) and one copy of a “non-DRB1*1501” allele (1HB–).          

 This can be appreciated from Table 3, where the ORs in these circumstances are:  

   (17)       OR2HB+   =    OR1/2   =      9.3  –  10.4                 # Comparing  (2HB+) to (HLA–) 

  OR1HB+ =    OR1/2    =     3.1  –   3.6                 # Comparing  (1HB+) to (HLA–) 

 Notably:   P(2HB+│HLA+, IGMS)  =  0.18                 # Table (3) 

 From Tables 2 & 5:  P(HLA+│MS, IGMS)  =  0.57  ;  and:    P(HLA+│MS)  =  0.55 

 For illustrative purposes, we will assume that, all of the enrichment occurs via Mechanism (2)  and is due to a               

 penetrance imbalance in the (2HB+, G) subset. Assigning the factor (v) to represent this additional enrichment,                  

 and because the subsets (1HB+, G) and (2HB+, G) partition the set (HLA+, G), therefore: 

    (18)      P(MS│2HB+, HLA+, G, IGMS)       =    P(MS│2HB+, G, IGMS) 

          =    (v)*P(MS│G, 1HB+, IGMS)  =  (v)*P(MS│G, HLA–, IGMS) 

    (19)      P(MS, HLA+│G, IGMS)    =    P(HLA+│G, IGMS)*P(MS│HLA+, G, IGMS) 

    (20)      P(MS│HLA+, G, IGMS) =    P(MS, 2HB+│HLA+, G, IGMS)  +  P(MS, 1HB+│HLA+, G, IGMS)   

                =    P(2HB+│HLA+, G, IGMS)*P(MS│2HB+, G, IGMS)    

       +  P(1HB+│HLA+, G, IGMS)*P(MS│1HB+, G, IGMS) 

 So that, using the relationships of Eq. (18) yields: 

    (21)       P(MS│ HLA+, G, IGMS) = {(v)*P(2HB+│HLA+, G, IGMS) + P(1HB+│G, IGMS)}*P(MS│HLA–, G, IGMS) 

  Using the results of Prop. (5.2b), which indicates that:         P(MS, G)  ≈  P(MS) 

               And substituting into Eq. (21), the observed values of:  

  P(2HB+│HLA+, G, IGMS)  =  0.18  ;    and: P(1HB+│HLA+, G, IGMS)  =  0.82   # Table (3) 

 and using Eq. (20) yields: 

    (22)  P(MS, HLA+│G, IGMS)    =  {(0.18)v + 0.82}*P(HLA+│G, IGMS)*P(MS│HLA–, G, IGMS) 
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    (23) also: P(MS, HLA–│G, IGMS)    =    P(HLA–│G, IGMS)*P(MS│HLA–, G, IGMS) 

 and: P(MS│G, IGMS)  =  {[(0.18)v + 0.82]*P(HLA+│G, IGMS) +  P(HLA–│G, IGMS)}*P(MS│HLA–, G, IGMS) 

 Therefore, using Eqs. (22 & 23) & Prop. (5.2b) & Table 5, yields:                           

    (24)        P(HLA+│MS, G, IGMS)   =     P(MS, HLA+│G, IGMS) / P(MS│G, IGMS) 

                 =   {[(0.18)v + 0.82]*(0.55)} / {[(0.18)v + 0.82]*(0.55) + 0.45}  =  0.57 

 Solving Eq. (24) for (v) yields: v  = P(MS│2HB+, IGMS) / P(MS│1HB+, IGMS) =   1.47   

 or, from Eq. (18) and Prop. (2.3), equivalently:   

  v  = P(MS│2HB+, G, IGMS) / P(MS│HLA–, G, IGMS)  =   t’/s’  =   OR3  =  1.47   ≥    OR2 

 Thus, as is the case for carrier-status, the large majority (possibly all) of the enrichment (OR1/2 ≥  9.3), which         

 takes place in the 2HB+ subset during the first and second enrichment stages, occurs via Mechanism (1).  

  Consequently, the fact that:  R1  ≈  R           # See above; Prop. (6.3b) 

     Suggests that, even for the partition (Gx+ = 2HB+):      t’  ≈   b’  ≈   s’ 

 Defining: z2HB+  =    P(MS│G, 2HB+)   

   z1HB+  =    P(MS│G, 1HB+)  

 and:  zHLA–  =   P(MS│G, HLA–) 

 Then, from Prop. (2.3), Eq. (18), and by convention:   

  t’/s’   ≥   z2HB+ / zHLA–  =   z2HB+ / z1HB+   ≥  1 

    (25) Therefore, because: t’/s’   ≈  1  ;        then, also:  z2HB+  ≈  z1HB+  =   zHLA–  ≈   z 

 From Prop. (5.2b), and using the data in Tables 2: 

       P(MS│2HB+)  ≈  P(MS, G│2HB+)  =  P(2HB+│MS, G)*P(MS, G) / P(2HB+)    

 so that: P(MS│2HB+)  ≈   (0.10)(0.0015) / (0.0.016) =  0.00938 

 Also: z2HB+ =  P(MS, G│1HB+)  =  P(1HB+│MS, G)*P(MS, G) / P(1HB+)   

 so that: P(MS│1HB+)  ≈   (0.45)(0.0015) / (0.224) =  0.00301 
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    (26) Therefore: P(G│2HB+)  =  P(MS, G│2HB+) / z2HB+   

    (27) and:  P(G│1HB+)  =  P(MS, G│1HB+) / z1HB+ 

 Following the logic of Prop. (4.2b) and Eq. (25), therefore, again:   

  0.067   ≤     z2HB+  ≈  z1HB+    ≤    b’  ≤   (0.134) / (0.94)  =   0.143 

 Substituting these ranges into Eqs. (26 & 27) yields 

 For 2HB+:     (0.00938) / (0.143)   =   0.066   ≤   P(G│2HB+)  ≤   (0.00938) /  (0.067)  =  0.140 

 And for 1HB+:     (0.00301) /  (0.143)  =   0.021   ≤   P(G│1HB+)  ≤    (0.00301) /  (0.067)  =  0.045 

 Using a more refined estimate for (z) of:      

   0.067   ≤   z    ≤   0.089   # From Eq. (8) of Prop. (7.1a); Section E 

 yields:   0.110   ≤   P(G│2HB+)    ≤    0.140 

 and:  0.036   ≤   P(G│1HB+)    ≤    0.045 

Proof of Proposition 6.4   Hardy-Weinberg Considerations 

6.4a. Alternatively, we can analyze the impact of DRB1*1501 status on MS using a Hardy-Weinberg Equilibrium 

 (HWE) approach. We will consider a population in HWE with respect to a particular gene (which has one of       

 two possible allelic states) and with each allelic state having a specific mean allelic frequency (MAF). In this 

 section, these two states are distinguished by (p) and (q), where (p) is the MAF of the first state and (q) is the              

 MAF of the second. {NB: elsewhere in this paper (p), and (q) have different meanings.}   

 Thus: p  =  P(State 1)  ;  q  =  P(State 2)  ;   and:   p  +  q  =  1        # (State 1) and (State 2) form a partition 

 In this case, the three genotypes (in combination) at equilibrium are represented by:   

   (p  +  q)2      =  p2  +  2pq  +  q2     =  1 

 where:  p2   =   P(homozygous; State 1/ State 1)  

   2pq   =   P(heterozygous; State 1/ State 2)  

 and:  q2   =   P(homozygous; State 2/ State 2) 

 We can then apply a selection pressure to perturb this equilibrium state. We define absolute fitness levels for the 

 different genotypes{(Wp), (Wpq), and (Wq)} such that the make-up of the selected, next generation, population is:  

   (Wp)p2  +  (Wpq)2pq  +  (Wq)q2    
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 Thus, the new MAFs (p’ and q’) in the next generation, which results from this applied selection, will be: 

   (28)   p’  =   {(Wp)p2  +  (½)(Wpq)2pq}  / {(Wp)p2  +  (Wpq)2pq  +  (Wq)q2}    

   (29) and:  q’  =   {(Wq)q2  +  (½)(Wpq)2pq}  / {(Wp)p2  +  (Wpq)2pq  +  (Wq)q2}    

 where, by this definition:  p’  +  q’  =  1 

 Eqs. (28 & 29) can be re-expressed by defining (X) as:      

   X  =  (Wp)p2  +  (Wpq)2pq  +  (Wq)q2 

               and by defining normalized fitness levels for the different genotypes {(wp), (wq), and (wpq)} as :  

   wp   =  Wp / X   ;       wq   =  Wq / X   ;      and: wpq   =  Wpq / X 

 In which case:  p’  =   (wp)p2  +  (½)(wpq)2pq  

 and:  q’  =   (wq)q2  +  (½)(wpq)2pq  

 If, after the selection process, the resultant population is still in HWE, then it must be the case that:  

    (31)   (p’ + q’)2   =   (p’)2  +  2(p’)(q’)  +  (q’)2   =  (wp)p2  +  (wpq)2pq  +  (wq)q2  

    (30) In which case: p’  =  (wp)½ p  ;          q’  =  (wq)½ q  ;     and:       (wpq)  =  (wp)½ (wq)½  

 Otherwise, the resulting population will not be at HWE.    

6.4b. This suggests a method for further exploring the impact of a genetic trait (Gx+) on the development of MS.    

 Thus, by analogy to HWE (Prop. 6.4a), we can consider the development of MS as a selection process with a 

 different “fitness” for each genotype. In the circumstanaces of DRB1*1501, the three genotypes are: 

  1. Homozygous DRB1*1501 ;           or:    (2HB+)     or:      (1HB+, 1HB+) 

  2. Heterozygous DRB1*1501 ;           or: (1HB+)     or:      (1HB+, 1HB–) 

 and: 3. Homozygous “non-DRB1*1501” ;    or:   (HLA–)     or:  (1HB–, 1HB–) 

 In the analogy, for a general population (at HWE) where:          P(HLA+)   =   0.24   ;    therefore:  

    (32)  p2     =  P(2HB+)   =  0.016  ;   2pq   =  P(1HB+)  =  0.224  ;   and:     q2      =  P(HLA–)    =  0.76 

 In the general population, these genotypes are presumed to be in HWE and, in fact, for the UCSF #2 control 

 population, this presumption is supported by the data (Table 3). In addition: 

  1  ≈  P(G│MS)  =  P(2HB+, G│MS)  + P(1HB+, G│MS)  +  P(HLA–, G│MS)          # Prop. (5.2b) 
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 where, from Eq. (31) and Table (2):   

  P(2HB+, G│MS)   =  {(p2)*P(G│2HB+)*P(MS│2HB+, G)} / P(MS)      ≈  0.10 

  P(1HB+, G│MS)   =  {(2pq)*P(G│1HB+)*P(MS│1HB+, G)} / P(MS)   ≈  0.45 

 and: P(HLA–, G│MS)   =  {(q2)*P(G│HLA–)*P(MS│HLA–, G)} / P(MS)     ≈  0.45 

           Consequently       wp     =  {P(G│2HB+)*P(MS│2HB+, G)}/ P(MS)  =  P(G│MS)*P(MS, G│2HB+) / P(MS, G)

   wpq    =   {P(G│1HB+)*P(MS│1HB+, G)}/ P(MS) 

   wq     =   {P(G│HLA–)*P(MS│HLA–, G)}/ P(MS)  

 Based on the data in Table 3, each of the MS populations studied are either at or very near to HWE with respect  

 to DRB1*1501 status, even though this HWE is (in all cases) a very different one from that of the control      

 populations. Therefore, based on Eqs. (30–32), this yields the relationship that:  

              (wp)p2  +  (wpq)2pq  +  (wq)q2   =   p’2  +  2p’q’  +  q’2   =  1 

    (33)   and, thus:            wp  =  P(MS│2HB+) / P(MS)  =  P(2HB+│ MS) / P(2HB+)   =   (p’/ p)2 

             Similarly:             wq  =  P(MS│HLA–) / P(MS)  =  P(HLA–│ MS) / P(HLA–)  =   (q’/ q)2 

             Thus, for a population at HWE, the quantity (wp)½  estimates the relative MAF of the risk allele in the susceptible           

 MS population compared to its MAF in the general population. Accepting the conclusion that:

                                        P(MS, G)   ≈   P(MS)                                                                                    # Prop. (5.2b)

             Then, this relative MAF, in turn, represents the entire enrichment (OR1 and OR2) that occurs when moving, 

              first, from the general population to the (G) population and then, second, from the (G) population to the (MS, G)      

              population. In addition, the ratios of these “fitness” levels represent the relative enrichment of the different 

               genotypes when moving from the general population to the (MS) population. For example, comparing the relative

               enrichment of (2HB+) compared to (HLA–), yields: 

    (34) {P(G│2HB+)*P(MS│2HB+, G)} / {P(G│HLA–)*P(MS│HLA–, G)}  ≈  (wp) / (wq)  

 Moreover, because, based on the many considerations of Props. (6.3a – 6.3d), & Eq. (25),  it seems 

               to be the case that:         P(MS│G, 2HB+)  ≈  P(MS│G, 1HB+)  ≈  P(MS│G, HLA–) 

     (35)    and, therefore, that:       (wp) / (wq)   ≈   P(G│2HB+) / P(G│HLA–) 
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 We will assume that this approximate equality is a true equality and refine our nomenclature such that:  

  P(HB+│G)  =  p’  =  MAF of the DRB1*1501 allele in the susceptible population 

 and: P(HB–│G)  =  q’  =  combined MAF of  “non-DRB1*1501 alleles” in the susceptible population 

 In the context of DRB1*1501 (Table 3), we take the independent selection of these alleles to imply that:  

  P(1HB+, 1HB–│G)   =   2*P(HB+│G)*P(HB–│G)  =  2{(wp)½ p}*{(wq)½ q} 

 and: P(1HB+, 1HB+│G)  =   {P(HB+│G)}2   =  (p’)2  =   wp (p2)  ;    

 and:  P(1HB–, 1HB–│G)  =  {P(HB–│G)}2    =  (q’)2  =   wq (q2) 

 Applying these weights to Eq. (31) yields:  

    (36)  (wp)p2 + (wpq)2pq + (wq)q2   =  (wp)p2  +  (wp)½ (wq)½ 2pq  +  (wq)q2   =  {p(wp)½ + q(wq)½}2   =  1 

 Defining (w) by the relationship: w  =  (wp / wq)½  > 1  ; we can transform Eq. (36) to yield: 

  q2   +  (w)*2pq   +   (wp)2   =  (w0)*q2  + (w1)*2pq  +  (w2)*p2   =  (q  +  wp)2  =  1/ wq 

              For convienience, we can then define “apparent” initial probabilities for the different genotypes as:       

   P(HLA–)app  =  (wq)*P(HLA–) ; P(1HB+)app  =  (wq)*P(1HB+)         

  and: P(2HB+)app  =   (wq)*P(2HB+)   

             So that, the relative proportions of genotypes in the susceptible population can be represented as: 

   P(HLA–│G)  =  P(HLA–)app  ;    P(1HB+│G)  =  (w)*P(1HB+)app   

              and: P(2HB+│G)  =  (w2)*P(2HB+)app 

 Moreover, from Eq. (25): P(MS│G, 2HB+)   ≈   P(MS│G, 1HB+)  ≈  P(MS│G, HLA–) 

 Thus, the relative proportions of genotypes in the MS population can also be represented as:  

   P(HLA–│MS)  =  P(HLA–)app  ;    P(1HB+│MS)  =  (w)*P(1HB+)app   

             and: P(2HB+│MS)  =  (w2)*P(2HB+)app 

  It is in this sense that the two DRB1*1501 alleles are said to be independently selected; that is the 

 relative normalized selection pressure for two alleles (w2) is equal to the square of that for one allele (w). 
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 Thus, the weighting scheme implied here is geometric (1, w, w2) for the homozygous-lack, and for the 

 heterozygous- and homozygous-presence, of the risk allele.  This is analogous to the joint probability of two 

 events being the product of the individual probabilities; and it contrasts to the weighting scheme for recessive 

 and dominant traits, assuming a non-zero risk for non-carriers and a suitable definition of  (w > 1), which 

 would be (1, 1, w) and (1, w, w), respectively. Moreover, because the arguments made above are fully 

 reversible, the initial and final populations will be in HWE if, and only if, the selection pressure is geometric. 

 Consequently, if both initial and resulting populations (following strong selection) are at HWE (Tables 2 – 4), 

 this implies that, for some (wp) and (wq), Eq. (36) holds. Furthermore, a geometric scheme for 

 DRB1*1501 implies that the selection is occurring at the level of the allele; not the genotype. Thus, each 

 DRB1*1501 allele is being independently selected to produce genetic-susceptibility.   

  This suggests that each 1501 allele contributes equally to the total number of susceptibility alleles 

 needed to produce susceptibility.27 For example, if on average, susceptible non-DRB1*1501 genotypes have 

 ten susceptibility alleles, susceptible genotypes with one DRB1*1501 allele might have only nine, whereas 

 susceptible genotypes with two such alleles might have only eight.27 

6.4c. As a result, we can calculate these HWE weights for the DRB1*1501 allele directly from observed data. For         

 example, using the independent Canadian and UCSF #2 samples, both of which include observed cases and          

 observed controls (Table 3), and in conjunction with and Eqs. (31, 33 & 36), we estimate that: 

      For Canada:  wp  =     (0.329 / 0.128)2   =  6.59           # Assuming cases & controls are in HWE 

    wq   =    (0.671 / 0.872)2   =  0.59 

    wpq  =        (wp)½ (wq)½   =  1.98 

      For UCSF #2:  wp    =     (0.269 / 0.104)2   =  6.69            # Using the actual data for cases & controls 

    wq    =    (0.731 / 0.896)2   =  0.67   

     wpq   =        (wp)½ (wq)½   =  2.01  

 Averaging these two experiences yields:   

    (37)      wp  =  P(G│2HB+)*P(MS│2HB+, G)  =  (6.64 / 0.63)(wq)  =  (10.5)(wq)  
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             Using Eqs. (25) & (34), this yields: 

          wp   =  P(G│2HB+)  =    (10.5)(wq)  

              so that:           (wp) / (wq)  =  P(G│2HB+) / P(G│HLA–)  =  10.5

 Therefore, despite a very strong selection pressure, the large majority of DRB1*1501 genotype selection seems                      

 to occur when moving from the general population to the susceptible (G) population (the OR1 step) and very little 

 selection seems to occur when moving from the set (G) to the set (MS, G) – i.e., during the (OR2) step.  Moreover,       

 the fact that the initial set (general population) and final set (MS, G) are at HWE, almost certainly, means that the 

 intermediate set (G) is also at HWE.  

6.4d. In addition, for each of these samples, for men and women (considered separately), the observed proportions                       

 of cases in the different HLA-categories are very near to those expected at HWE (Tables 3 & 4).  Despite this, 

 however, men consistently have a lower odds ratios for MS in all HLA+ categories, a smaller proportion of  

 (2HB+, MS) patients, and a lower probability for P(HLA+│MS) compared to women (Tables 2 & 5). For           

 example, undertaking the same analysis as in Prop. (6.4c) yields: 

 For women:  Canada:  wp  =     (0.367 / 0.128)2   =  8.22        # Assumes cases & controls in HWE 

     wq  =     (0.633 / 0.872)2   =  0.53 

     wpq  =        (wp)½ (wq)½ =  2.08 

   UCSF #2 wp  =     (0.290 / 0.104)2   =  7.79       # Actual data for cases & controls 

     wq  =     (0.710 / 0.896)2   =  0.63 

     wpq  =        (wp)½ (wq)½ =  2.21 

 For men:  Canada:  wp  =     (0.307 / 0.128)2   =  6.59        # Assumes cases & controls in HWE 

     wq  =     (0.693 / 0.872)2   =  0.63 

     wpq  =        (wp)½ (wq)½ =  1.91 

   UCSF #2 wp  =     (0.214 / 0.104)2   =  4.43         # Actual data for cases & controls 

     wq  =     (0.786 / 0.896)2   =  0.77 

     wpq  =        (wp)½ (wq)½ =  1.81 
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 Thus, the observed differences between men and women with MS indicate that men (compared to women)             

 have a smaller MAF for the DRB1*1501 allele in an MS population, which is reflected in the consistent         

 observation from Table 2 that:  

    (38)   P(HLA+│MS, F, G)  >  P(HLA+│MS, M, G)      

 To evaluate the possible bases for this observation we will consider the following relationships:  

    (39)   P(MS, F│G)  =  P(F│G)*P(MS│F, G)   

                      =  {P(MS│F, G) / P(MS│M, G)}*{P(F│G) / P(M│G)}*P(MS, M│G) 

    (40)      also:  P(HLA+│MS, F, G)    =  P(MS, F, HLA+│G) / P(MS, F│G) 

    (41)      and:  P(HLA+│MS, M, G)   =  P(MS, M, HLA+│G) / P(MS, M│G) 

    (42)      and:  P(MS, M, HLA+│G)  =  P(M│G)*P(HLA+│M, G)*P(MS│M, G, HLA+) 

 Consequently, dividing Eq. (40) by Eq. (41) yields:  

    (43)   P(HLA+│MS, F, G) / P(HLA+│MS, M, G)   

    =  {P(MS, M│G) / P(MS, F│G)}*{P(MS, F, HLA+│G) / P(MS, M, HLA+│G)} 

 Breaking down the RHS of Eq. (43) into its two component parts and substituting into these equations the  

 relationships derived from Eqs. (39–42) yields: 

    (44) First:        P(MS, M│G) / P(MS, F│G)  =  {P(M│G) / P(F│G)}*{P(MS│M, G) / P(MS│F, G)} 

    (45) Second:        P(MS, F, HLA+│G) / P(MS, M, HLA+│G)  = 

           {(P(F│G) / P(M│G)}* 

     {P(HLA+│F, G) / P(HLA+│M, G)}* 

      {P(MS│F, G, HLA+) / P(MS│M, G, HLA+)}
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 Then, multiplying Eqs (44 & 45) and substituting back into Eq. (43), yields: 

              P(HLA+│MS, F, G) / P(HLA+│MS, M, G)  = 

        {P(HLA+│F, G) / P(HLA+│M, G)}* 

                    {P(MS│F, G, HLA+) / P(MS│M, G, HLA+)}/{P(MS│F, G) / P(MS│M, G)} 

 Thus, as noted earlier, there are again only two possible mechanisms to explain the relationship of                           

 Eq. (38). The first is a MAF effect or: 

  1.   P(HLA+│F,  G)  >  P(HLA+│M, G)                  

 and the second is a penetrance effect or:  

  2.   P(MS│F, G, HLA+) / P(MS│M, G, HLA+)  >  P(MS│F, G) / P(MS│M, G)      

 Of these, the conclusions of Props. (6.3a – 6.3d) clearly favor mechanism (1), so that the principle basis                          

 for Eq. (38) can most easily be ascribed to the fact that men (compared to women) have a smaller                       

 MAF for the DRB1*1501 allele in the susceptible population (i.e., in the subset G).  
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Proposition 7:   1. a. 0.067   ≤    P(MS│G)   =   z    ≤   0.089          

    b. 0.016   ≤   P(G)   ≤   0.022 

                  c.            0.030   ≤   P(MS│M, G)  ≤  0.040 ;   and:     0.096  ≤  P(MS│F, G)   ≤  0.191 

   2. P(G3│G)  ≈  0 

New Definitions and Relationships for Proposition 7: 

1. (G0), (G3)  =  Mutually exclusive sets of genetically-susceptible individuals who either depend upon (G0) or 

  don’t depend upon (G3) environmental events to produce MS.                                (G0) + (G3)  =  (G)  

2. P(MS, E│G3)  =  P(MS│E, G3)*P(E│G3)  =  P(MS│G3)*P(E)      # See Section B 

Assumption:  

A8. (G3) ⊂ (G1)  ;         or, equivalently: P(G1│G3)  =  1  

Proof of Proposition 7.1: 

7.1a From # Props. (2.1 & 5.2c) and Table 6, it follows that: 

 P(MS│M, G)  =   zs   ≤   P(MS│M, G, IGMS)  =  P(MS│M, IGMS) / g2   ≤  0.036 / 0.90  =  0.040  

 and: P(MS│F, G)   =   zt   ≤  P(MS│F, G, IGMS)  =  P(MS│F, IGMS) / g1  ≤  0.183 / 0.96  =  0.191  

     (1) In addition: P(MS│G)  =  z  =   P(M│G)*P(MS│M, G)  +  P(F│G)*P(MS│F, G) 

 From Eq. (13) of Prop. (6.2d), predicted ranges provide the following boundary conditions: 

     (2) at the lower-bound: P(MS│F, G)   =  zt  =  (2.3)*P(MS│G, M)  ;      and:     P(M│G)  =  0.51  

     (3) at the upper-bound: P(MS│F, G)   =  zt  =  (5.4)*P(MS│G, M)  ;      and:      P(M│G)  =  0.72   

 Substituting these boundary conditions back into Eq. (1) yields the boundaries: 

     (4) at the lower-bound: z  =  (0.51)*(0.040)  +  (0.49)*(2.3)*(0.040)  =   0.065 

     (5) and at the upper-bound: z  =  (0.72)*(0.040)  +  (0.28)*(5.4)*(0.040)  =   0.089 

 However, the Eq. (4) lower boundary for (z) is inconsistent with the earlier conclusion that:        

     z  ≥  0.067     # From Eq. (7); Prop. (4.2b); Section C 

 To resolve this discrepancy, we will define (a1) such that: P(MS│G, F) / P(MS│G, M)   =  a1 

 To make these two analyses  “coherent”, requires the lower boundary-estimate to be: 

    (6)   z  =  {1 – P(F│G)}*(0.040)  +  P(F│G)*(a1)*(0.040)  =  0.067 

    (7) where:  {P(F│G) / [1 – P(F│G)]}  =  (0.69 / 0.31) / (a1)      # Prop. (6.2d)  
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 Solving Eqs. (6 & 7) for (a1) & P(F│G)  yields:       a1  =  2.4 ;       and:  P(F│G)  =  0.48 

 so that the lower-boundary is: z   =  (0.52)*(0.040)  +  (0.48)*(2.4)*(0.040)  =   0.067 

     Thus, using these new boundaries make our other estimates “coherent” requires that:  

    (8)  0.067   ≤   z   ≤  0.089              # Eq. (5)  & Prop. (4.2b) 

    (9)  0.28   ≤  P(F│G)  ≤  0.48 ;     and:   2.4  ≤  P(MS│G, F) / P(MS│G, M)  ≤  5.4           # Prop. (6.2b) 

   (10) Also, combining Eqs. (8 & 9) with the estimates from Props. (6.2a) & (6.3b), yield:  

  0.010  ≤  P(G│F)  ≤  0.021  ;        and:       0.023  ≤  P(G│M)  ≤  0.032 

 and: 0.044 ≤  P(G│HLA+) ≤ 0.049 ;    and:       0.012  ≤  P(G│HLA–)  ≤  0.014     #  zt   ≈   zs  ≈    z 

7.1b. In addition, the range-estimate for (z) given by Eq. (8), also requires other range-estimates to be adjusted   

 to make them  “coherent” with each other. Thus, because: 

  (g)*P(MS) / zmax   ≤   P(G)   ≤    2*(1.86)*{P(MS) / P(MS│MZMS)}  # Eq. (13); Prop. (4.2c) 

   (11) Therefore: (0.94)(0.0015 / 0.089)  =  0.016  ≤   P(G)  ≤  2*(1.86)*{0.0015 / 0.25)  =  0.022            

 Also, because from Prop. (4.2b):    σzi
2  =  (b’ –  z)*(z)   

   (12) So that:  0.0040  =  (0.134 – 0.089)*(0.089)   ≤   σzi
2   ≤  (0.143 – 0.067)*(0.067)  =  0.0051 

 and, therefore: 0.063   ≤    σzi   ≤   0.071        

7.1c. Using the new “coherent” ranges of Eqs. (8–11), together with Eq. (3), yields: 

   (13)   (0.72)(zs)  +  (0.28)(5.4)(zs)  ≥  0.067 ;   or: zs   ≥  0.030 

 Also, from Eq. (9) of Prop. (6.2b):               zs   ≤   0.040 

   (14) Combining these estimates yields:      0.030   ≤   P(MS│M, G)   =   zs     ≤   0.040      

  This also leads to the lower-boundary condition that:   

   (15)  (0.52)(0.04)  +  (0.48)(zt)  ≥  0.067 ;         or:  zt    ≥   0.096 

 Also, from Eq. (8) of Prop. (6.2b):               zt   ≤  0.191  

   (16) Combining these estimates yields:  0.096   ≤    P(MS│F, G)   =   zt      ≤   0.191
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Proof of Proposition 7.2: 

7.2a. Because “purely genetic” MS is defined to be independent of the environment (see also Section B),  it’s 

 penetrance is expected to very high (i.e., near unity) and, thus, we anticipate both that: 

     (17)  P(MS│G3)  ≈ 1  ;         and also  that: (G3) ⊂ (G1)   # Assumption (A8) 

 If these Eq. (17) conditions were not to be met, it would raise the question of what factors determined the 

 lower penetrance in (G3). If these factors were potentially identifiable and non-hereditary, then they would 

 constitute environmental events and, thus, these genotypes would be in (G0); not in (G3). Although a stochastic 

 mechanism might lower the penetrance somewhat, such a mechanism seems unlikely to reduce the penetrance 

 of “purely genetic” MS markedly. Using these Eq. (17) conditions, we will first consider the most  “extreme” 

 circumstance, in which we assume that: 

    (18)  P(G3│G)  =  P(G1│G)  =  p  ;      P(MS│G3)  =  x  ≈  1 ;   and:     P(MS│G2) =  y  ≈  0 

 where the variances of the of the (xi) and (yi) terms (σxi
2  and  σyi

2 ;  respectively) are assumed to be zero. 

    (19) In this circumstance:  0.081   ≥     z   =   px  +  (1 – p)y   =   px   =   p       # Prop. (3.1a) & Eq. (8) 

    (20) Thus, under these conditions:      p  ≤  0.081 

 Even if we assume that the Eq. (17) conditions are satisfied by any:  x  >  0.8 

 Then, Eq. (19) still yields:       p  <  0.101 

 It is noteworthy, however, that these extreme conditions are clearly contrary to observed epidemiological facts.  

 Thus, under these particular extreme conditions we would also expect that:     

  P(G3│G, MS)  =  q  =  q’  =   (px) / {px  +  (1 – p)y}   =  (px) / (px)  =  1   

 Because: P(G3│G, MS)  =  P(G3│G, IGMS)        # Assumptions (A1) & (A3) 

 Therefore, in this circumstance, we would further anticipate that:  

    (21)   P(MS│G, IGMS)  =   b’   =   qx  +  (1 – q)y   =   qx   ≈   1            # Prop. (3.2a) 

 Consequently, the fact that:  0.134   ≤    b’    ≤   0.143               # Prop. (5.2b) 

 Indicates that the Eq. (18) conditions (even at:  x  >  0.8) are very far removed from the actual data. 
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7.2b. Next we will consider an alternative set of “more plausible” extreme conditions. By Props. (2.1 & 2.2), any 

 variance in the penetrance value within the (G3) or (G2) subset, will lead to the enrichment of more penetrant 

 genotypes when moving either from (G) to the set (G, MS) or from (G, IGMS) to the set (G, MS, IGMS). 

 Therefore, in the new “extreme” condition, we will assume that all of the enrichment that takes place is due to 

 the difference in penetrance between the (G3) and (G2) subsets and, thus, where the variances of the of the (xi) 

               and (yi) terms (σ      xi
           2  and σyi 

  2) are still assumed to be zero. Thus, using these definitions, these modified  

              “extreme” conditions then become: 

      (22)      P(G3│G)  =  P(G1│G)  =  p  ;      P(MS│G3)  =  x  ≈  1;       and:     P(MS│G2) =  y        

             (23)      where:     σ  xi
 2   =  σyi

   2  =  0  ;        so that:   q   =  q’ 

                 (24)       b’  =  qx  +  (1 – q)y  =  {px2  +  (1 – p)y2} / z      # Prop. (3.2c)   

        z   =   px  +  (1 – p)y       # Prop. (3.1a)        

                 (25) With rearrangement this yields:     y  =   (z – px) / (1 – p)   

                 Substituting Eq. (25) into Eq. (24), together with conditions from Eqs. (22 & 23), yields: 

          zb’  =  px2  +  (z – px)2 / (1 – p)  

          or: z(1 – p)b’   =    px2  –  p2x2  +   z2  – 2pxz  +  p2x2    =    px2  +   z2  – 2pxz 

                (26)    With rearrangement, this becomes:  p  =  (zb’  –  z2) / (x2 – 2xz  +  zb’)  

                 Therefore, using the limits set for (z) and (b’) by Eq. (8) & Prop. (5.2b):       

                 Eq. (26) can be solved at: x  =  1 ;        yielding:      p  =   P(G3│G)   ≤   0.006 

                  Eq. (26) can be solved at: x  >  0.8 ;     yielding:      p  =   P(G3│G)   <   0.010     

                  Moreover, because the conditions that: P(G3│G)  =  P(G1│G)  =   p  ;     and: σ   yi
    2   =  0  

                  seem too extreme for the actual distribution, and because less extreme assumptions lead to smaller estimates, 

                  these derived upper limits for the ranges of P(G3) are, almost certainly, too large.   

                  Therefore, it must be the case that:  P(G3│G)  ≈  0  

                   And, consequently, for all practical purposes, “purely genetic” MS does not exist.
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Proposition 8:  1. a. P(S–│G)  ≈  P(HLA–│MS) / P(HLA–)  =  0.59 

    b. 0.41   <   P(S+│G)   ≤   0.415 

     Thus: P(S–, S+)   ≤   0.007  

New Definitions for Proposition 8:        (see Section B for the definition of a susceptible genetic combination) 

1. (S+)  =  the set of individuals who possess a combination of susceptibility alleles, which includes   

  the DRB1*1501 allele, that, by itself, is sufficient to make the person susceptible to MS. 

2. (S–)  =  the set of individuals who possess a combination of susceptibility alleles, not including   

  the DRB1*1501 allele, that, by itself, is sufficient to make the person susceptible to MS. 

3. A person is in both sets (S+) and (S–) if, in addition to the combination that makes them a member of  

  the set (S–), they also possess another combination that make them a member of  (S+).  

Assumption: 

A9. P(HLA+│S–)  ≈  P(HLA+)            #  (HLA+) status is independent of  (S–) status    

Proof of Proposition 8.1 

8.1a.  From Props. (1.7 & 6.3b):   P(MS│G, HLA+)   ≈   P(MS│G, HLA–)  ≈  P(MS│G) 

     (1) and, by extension:  P(MS│G, S+)  ≈   P(MS│G, S–) ≈  P(MS│G, HLA–, S–)  ≈  P(MS│G) 

 Also, because:   P(S–│MS, G, HLA–)  =  1             # (MS, G, HLA–) ⊂  (S–) 

     (2) then: P(HLA–, S–│MS, G)  = P(HLA–│MS, G)*P(S–│MS, G, HLA–)  =  P(HLA–│MS, G)        

 Also, from Eq. (1): 

     (3)  P(HLA–, S–│MS, G)  = P(HLA–, S–│G)*P(G)*P(MS│G, HLA–, S–) / P(MS, G)  ≈  P(HLA–, S–│G) 

     (4) and:  P(HLA–, S–│G)  =  P(S–│G)*P(HLA–│G, S–)  =  P(S–│G)*P(HLA–│S–)    # (S–) ⊂  (G) 

 or equivalently, from Eqs. (2–4):     

     (5)  P(HLA–, S–│MS, G)  =  P(HLA–, S–│G)  =  P(HLA–│MS, G)   =   P(S–│G)*P(HLA–│S–) 

 Thus, any person who belongs to the set (S–│G) has only a P(HLA–│S–) chance of also being (HLA–). 

 Compared to P(HLA–), the presence of other susceptibility alleles or genes at the DRB1 locus will 
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 make P(HLA–│S–) larger and the presence of protective alleles or genes will make P(HLA–│S–)  smaller. 

 Nevertheless, these other alleles/genes are low in frequency and small in contribution compared to the 

 DRB1*1501 allele.26 In addition, with approximately 50–200 susceptibility loci and only 11–18 necessary for 

 susceptibility,27 it seems likely that most of (S–) will consist of combinations not including the DRB1 locus. 

 Therefore, we will assume that: P(HLA+│S–)  ≈   P(HLA+)  =  0.24       # Assumption (A9) 

 However, because: P(S–)  =  P(HLA+, S–)  +  P(HLA–, S–)   ≈   {P(HLA+)  +  P(HLA–│S–)}*P(S–)   

 Therefore, Assumption (A9) also implies that: P(HLA–│S–)  ≈   P(HLA–)  =  0.76   

     (6) Also, because: P(HLA–│MS, G) = P(G│MS)*P(G, HLA–│MS) ≈ P(HLA–│MS) # Prop 5.2b:     g  ≈  1 

 Therefore, based on Eqs. (5 & 6), and on Assumption (A9):  

     (7)  P(S–│G)  ≈  P(HLA–│MS) / P(HLA–)  = (0.45 / 0.76) =  0.59   

 Without Assumption (A9):  0.45   ≤   P(S–│G)  ≤  0.59 

 And: P(S–)  =  P(S–, G)  =  P(S–│G)*P(G)  ≤  (0.59)(0.022)  =  0.013   # (S–)  ⊂  (G)  & Prop. (4.2) 

      (8) So that:  0.996   >  1  –  P(S–)   ≥   0.987          # NB: this doesn’t require Assumption (A9) 

8.1b. Because by definition, the different susceptibility loci are pair-wise independent, therefore, if (S–) consists of 

 genetic combinations not including a susceptible state at the DRB1 locus, then:  

       P(S+, S–)  =   P(S+)*P(S–) 

 By contrast, because membership in (S+) implies the presence of at least 1 of the DRB1 alleles is 1501, 

 therefore, if membership in (S–) is due to a “non-1501” susceptible state at the DRB1 locus, then:  

       P(S+, S–)  =   P(S+)*P(S–│ S+)  ;    and: P(S–│S+)  <   P(S–) 

              Consequently, in any case:       

  (9)                          P(G)  =  P(S+)  +  P(S–)  –  P(S+, S–)   ≥   P(S+)  +  P(S–)  –  P(S+)*P(S–)   

              thus:           P(G)  –  P(S–)  ≥  P(S+)*{1  –  P(S–)}      

              so that:       P(S+)  ≤  [P(G)  –  P(S–)] / [1  –  P(S–)]       

 (10)      or:              P(S+│G)  ≤  [1  –  P(S–│G)] / [1  –  P(S–)]                                        # Dividing both sides by P(G)  
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               Using Eq. (10) and making Assumption (A9) yields:   

    (11)  P(S+│G)  ≈  (0.41) / [1  –  P(S–)] 

 Therefore, from Eqs. (8 & 11), in the most likely case (i.e., making Assumption A9):  

  0.41  <  P(S+│G)  ≤  0.415    # When:    P(S–│G)  =  0.59 

 However, without making Assumption (A9), at the other extreme, this would become:  

  0.45  <  P(S–│G)  ≤  0.457    # When:    P(S+│G)  =  0.55 

 Therefore, in any case:  P(S+, S–)  ≤  0.007 
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Assumptions: 

A10. Because: P(MS, G)   ≥  (0.94)*P(MS)         # Prop. (5.2b) 

 therefore: P(MS, G)   ≈   P(MS)       

 We assume also that: P(MS, E)   ≈   P(MS) ;   and, consequently:        P(MS, G, E)   ≈   P(MS) 

A11. The hazard-rate (at different exposures) for developing MS in susceptible men and women is proportional  

Definitions: 

1. Time-Period–1 = (1941–1945)  ;   Time-Period–2  = (1976–1980)  

  –  these are indicated in the text by subscripts (1) and (2) 

  e.g., P(MS1) and (Zw1) represent P(MS) and (Zw) during Time-period–1 

2. Zm, Zw  =  probability of developing MS in susceptible men {P(MS, E│G, M)} and women {P(MS, E│G, F)}. 

 By Assumption (A10):    P(MS, E│G, M)  =  P(MS│G, M) ;  and:     P(MS, E│G, F)  =  P(MS│G, F) 

2. C   =   the proportionality constant for disease prevalence  –  such that:      C  =  P(MS1) / P(MS2) 

3.            u , x  =  Actual (u) and transformed (x) exposure-levels (all necessary factors) of the susceptible population

 x2 – x1  =  1 ;  Exposure-difference between the 2nd (x2) and 1st (x1) time-period is defined as “1 unit” 

4.           h(u) , g(u)  =  hazard-functions for developing MS in susceptible men {h(u)} and women {g(u)}  

 r   =  the proportionality constant for hazard  –  such that:      g(u)  =  (r)· h(u) 

5. λm , λw  =   Exposure-threshold necessary to produce disease in susceptible men (λm) and women (λw) 

 λ   =   λw  –  λm  =     the difference in exposure-threshold between susceptible women and men 

6. c , d  =  the maximum probability of MS in genetically susceptible men (c) and women (d). 

      i.e.,  c  =  P(MS│G, E, M)  ;     and:  d  =  P(MS│G, E, F)   

7. P(F1)  ,  P(F2)  represent (and are interchangeable with)  P(F│MS1) and  P(F│MS2) respectively 

 P(M1) , P(M2)  represent (and are interchangeable with):   

      
                       P(M│MS1)  =  1 – P(F1)  ;   and:   P(M│MS2)  =  1 – P(F2)    ; respectively 

Environmental Considerations 

 From Prop. (6.2), it is apparent that the greater prevalence of MS in women is due to:  

   P(MS, E│F, G)  >  P(MS, E│M, G)  

This could be due to women being more likely to experience a sufficient environmental exposure than       

men, to women having a different physiological response to a similar exposure compared to men, to       
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women having a greater probability of developing MS once the necessary environmental and genetic       

events have come together, or it could be due to some combination of these factors. Regardless of the      

reason, however, women and men require separate consideration so that:  

    (1) for women: P(G, F)*P(MS, E│G, F)    =  P(MS, F)   =  P(MS)*P(F│MS)            # Assumption (A10) 

    (2) for men:  P(G, M)*P(MS, E│G, M)  =  P(MS, M)  =  P(MS)*P(M│MS)            # Assumption (A10) 

Because the genetics of MS in Canada are unlikely to have changed substantially between the two       

time-periods (i.e., 35 years, or 1-2 generations)15, the {P(G), P(G│F), and P(G│M)} terms are assumed    

to be constant over this interval. In this case, the constant (C), representing the change in the disease 

prevalence:  P(MS1)  =  (C)*P(MS2)  ;  reflects the change in environmental exposures over time. 

 Thus:        P(MS1)*P(F│MS1) = (C)*P(MS2)*P(F│MS1) = (C)*P(MS2)*P(F1)        # Definition (7) 

 From Eq. (1) P(MS1, E│G, F)  =  P(MS1)*P(F│MS1) / P(G, F)  =  P(F1)(C)*P(MS2) / P(G, F) 

In Canada, the sex-ratio in MS patients {i.e., P(F│MS) / P(M│MS)} has increased from 2.2 in          

Time-Period–1 (i.e., 1941-1945) to become 3.2 in Time-Period–2 (i.e., 1976-1980).15   

Consequently:  

 P(MS, E│G, F)2  =   Zw2  =  P(F2)*P(MS2) / P(G, F) 

   (3)  P(MS, E│G, F)1  =   Zw1  =  P(F1)(C)*P(MS2) / P(G, F)   =  {P(F1)/P(F2)}C(Zw2)   

   (4) and, similarly:  P(MS, E│G, M)1 =  Zm1 = P(M1)(C)*P(MS2) / P(G, M) = {P(M1)/P(M2)}C(Zm2)  

Environmental Responses 

              From standard Survival Analysis methods, we define the cumulative survival function {S(u)}, the cumulative

              failure function, {F(u)}, and the hazard-functions and for men {h(u)} and for women {g(u)}.  

 From Assumption (A11):   g(u) / h(u)  =  r                

Also, defining {H(u)} as the definite integral of the hazard-function {h(u)} from a (u) level of exposure to  

a (0) level, we can transform (u) units of exposure into (x) units such that [x = H(u)].  Thus, for men: 

   (5)   ln [S(u)]      = – ⌠u  h(u)du         =       – ⌠x  dx      =       – x          
       ⌡0            ⌡0       
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By Definition:    H(u)  =  x  =   ⌠u  h(u)du
                                               ⌡0

For women:

ln [S(u)] = –⌠u g(u)du = –⌠u (r)h(u)du = -(r)*{⌠u h(u)du} = -rx
                  ⌡0                 ⌡0                            ⌡0
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Because we have assumed proportional hazard, therefore, for women: 

    (6)   ln [S(u)]       =   –⌠x  (r)dx       =     – (r)x 
       ⌡0       

 Taking the anti-log of both sides of Eqs. (5 & 6) yields:     

  S(u)   =   e – rx    and, thus:     F(u)   =   (1 – e – rx )      # By definition:    (r  =  1) for men 

 Also, we can define (as 1 exposure-unit) the difference in exposure between any two time-periods  

    (7) (x1) and (x2), such that:       x2  –  x1  =  1 

This definition transforms the exposure units from (u) to (x) and yields an apparently constant hazard-rate 

for both men and women, even though (x) may not increment the actual exposure linearly.   

Thus, the cumulative probability of failure (i.e., of developing MS in susceptible persons), in the 

circumstance where every susceptible person fails given sufficient exposure (E), is described by: 

 F(u)  =   P(MS, E│G)  =  P(MS│E, G)*P(E│G)  =   P(E│G)           # when:   P(MS│E, G)  =  1 

    (8)        Therefore:      F(u)  = 1 – S(u)  =  (1 – e – rx
 )   =    P(E│G, F)                    for women in this circumstance 

    (9)                  and:  F(u)  = 1 – S(u)  =  (1 – e – x
  )    =    P(E│ G, M)                  for men in this circumstance 

 However, unlike true survival analysis (where everyone dies given enough time), the probability of 

 developing MS may not increase to 100% as the level of environmental exposure increases (see 

               Section B). Also, men and women may not approach the same limiting value for this probability. 

 Finally, the level of environmental exposure at which the development of MS become possible              

 (i.e., the threshold) does not need to occur at zero and the threshold does not need to be the same for 

 men and women. Consequently, Eqs. (8 & 9) need to be written differently such that: 

   (10)  P(MS, E│G, F)    =  Zw    =   d{1 – e – r(x – λm – λ) }     for women     

   (11) and: P(MS, E│G, M)   =  Zm    =   c{1 – e – (x – λm) }     for men    

 The terms {c  = P(MS│G, E, M) and (d  = P(MS│G, E, F)} are positive constants that represent 

the conditional probability that susceptible men and women will develop MS given a maximum level of 

sufficient environmental exposure {i.e., where:  P(E│G, M) = 1;  and:  P(E│G, F) = 1}.  If (c) and (d) are 

equal, then men and women approach the same limiting probability of developing MS.  If (c) and (d) are 
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both 1.0, then, as for true survival, everyone ultimately fails. If the threshold in women (λw) is greater      

than that in men (λm), then the difference in threshold (λ) will be positive. Because, Assumption (A11) 

leads to exponential response curves, any two points determines each curve uniquely.   

Thus, from Eqs. (3, 4, 7, 10, & 11), and the range-estimates developed in Prop. (7.1c): 

   (12)  0.096        ≤    Zw2      =         d*{1 – e – r(x1 + 1 – λ  m – λ) }            ≤       0.191    

   (13)  0.030        ≤       Zm2      =        c*{1 – e – (x1 + 1 – λm) }                 ≤       0.040    

   (14)  0.087C     ≤      Zw1         =        d*{1 – e – r(x1 – λm – λ) }                ≤        0.172C   

   (15)  0.039C     ≤       Zm1      =        c*{1 – e – (x1 – λm) }                     ≤  0.053C   

Although the prevalence of MS is increasing, it seems unlikely that it could have more than 

 quadrupled in Canada over a 35 year interval.4, 15 Consequently:    C  >  0.25 

 Eq. (12) can be rearranged to yield:           (Zw2 – d) / d   =  – (e – r(x1 – λm – λ) ) e– r 

 Similarly, Eq. (14) can be rearranged to yield:       (Zw1 – d) / d   =  – (e – r(x1 – λm – λ) ) 

   (16) And, therefore, dividing these yields:         (Zw2 – d) / (Zw1 – d)   =  e– r  

   (17) Similarly, rearranging Eqs. (13 & 15) yields:        (Zm2 – c) / (Zm1 – c)    =  e– 1 

   (18) Combining Eqs. (3 & 16) yields:   d  =  Zw2{1 – (F1
 / F2)Ce– r} / (1 – e– r )  

   (19) Combining Eqs. (4 & 17) yields:                   c  =  Zm2{1 – (M1 / M2)Ce– 1} / (1 – e– 1
 )  

   (20) Also:  Zm2   <   c   =   [Zm2 – (Zm1)e–1] / [1 – e–1]               # Eq. (17) 

 and: [Zm2 / (1 – e–1)] – Zm2   >  (M1 / M2)(Zm2)Ce–1/ (1 – e–1)             # Eqs. (4), (19) & (20) 

 Therefore, based only on the observed change in the sex-ratio: 

   (21)  C   <   {[1 / (1 – e–1)] – 1}  / {(M1 / M2)e–1 / (1 – e–1)}  =  0.76        

 When:  r  = 1  ;    Eqs. (12–15) can be rearranged to yield:  

 eλ  =   [c/d][(Zw2 – d) / (Zm2 – c)]    =    [c/d][(Zw1 – d) / (Zm1 – c)]   

   (22) so that:  λ   =   ln{[c/d][(Zw2 – d) / (Zm2 – c)]}  =  ln{[c/d][(Zw1 – d) / (Zm1 – c)]} 
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zt  (in time period 2)  =  Zw2

zs  (in time period 2)  =  Zm2

zt  (in time period 1)  =  Zw1

zs  (in time period 1)  =  Zm1


Use link (on right) to Prop. (7.2c)


This derivation also makes use of the fact that:

         x2  =  x1  +  1
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   (23) Using an estimate of: 0.25  ≤  C ≤  0.75      # based on Eq. (21) 

Assuming (r  ≈ 1), together with Eqs. (12–15, 18, 19, & 22), yields the estimates of: 

   (24)  0.030     ≤     c     ≤    0.056      ;     0.114         ≤   d      ≤    0.277 

   (25)  0.100     ≤     λ     ≤    2.87        ;               2.5          ≤   d/c    ≤    7.5 

 From Eqs. (12 & 14), clearly, (d) is independent of (r) for all (r > 0). Thus, in Eq. (14), the second  

 point (Zw1), defining the exponential curve, is expressed only in terms of (C); not (r).  The same is true

               for the parameter (c), as can be appreciated from Eq. (19). 

 Thus, the estimates for (c), (d), and (d/c) depend only upon (C) and the observed sex-ratio change.   

 By contrast, the estimate for (λ) depends upon (C), (r), and the sex-ratio change.4  These relationships, 

 described by Eqs. (10 – 15 & 24 – 25), are depicted graphically in  Figure 1. 

 Also from Eqs. (3 & 16):       r   =   – ln{(Zw2 – d) / ([P(F1)C(Zw2) / P(F2)]  – d)} 

  (26) Using the range-estimates from Eqs. (12, 23, & 24) yields: 0.54   ≤   r   ≤   1.6 

Gender-Specific Differences in Hazard-Rate 

 For susceptible women, we define three terms (x1
app), (λw

app), and (λapp) such that:  

  x1
app  =  (r)x1  ;    x1

app  –   λw    =   x1  –   λw
app  ;        and:   λapp   =  λw

app  –  λm 

 From these definitions, it follows that:   

   x1
app  –  x1  =  (r – 1)x1  =  λw  –   λw

app 

  (27)  and: λapp   =  (x1  – x1
 app

 )   +   λw  –  λm  =  (1 – r)x1  +  λ    

The transformation of (λw) to (λw
app

 ) effectively creates (at the exposure x1) an apparent circumstance,  

in which (r = 1). Consequently, we can use the lower bound of (λ  ≥  0.10) from Eqs. (22 & 24) to  

express the apparent difference in threshold (λapp
 ) between men and women, such that:  

  λapp   =    ln{[c/d][(Zw1 – d) / (Zm1 – c)]}  ≥  0.10 

 in which case: λapp   =  (1 – r)x1  +  λ   ≥   0.10    # From Eq. (27) 

 Therefore: λ  ≥  0.10  ;     for all (r  ≥ 1)   # By definition:     x1 > 0  

 Consequently, assuming a proportional hazard for men and women, susceptible men (compared to 

 susceptible women) must have a lower threshold, a greater hazard-rate, or both (see Figure 1).
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         (λwapp , 0}    and    (x1 , Zw1)

that uniquely determine an exponential curve (for women), which passes through these 2 points.  See Figure 1

By definition, this exponential curve has the value for (r) of:          

                              r = 1

So that:     λapp   ≥ 0.10
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Gender-Specific Differences in Exposure 

 If there are three environmental events (EA, EB, and EC) necessary to produce MS,4 each of which is 

 both equally likely and conditionally independent (with respect to gender and susceptibility), then,   

 for women: 

           P(MS, E│G, F)  =  P(MS│G, E, F)*P(E│G, F)  =  (d)*P(EA, EB, EC│G, F)  =  (d)*{P(EA│G, F)}3 

 and for men: 

           P(MS, E│G, M) = P(MS│G, E, M)*P(E│G, M) = (c)*P(EA, EB, EC│G, M)  =  (c)*{P(EA│ G, M)}3 

 Because, by Assumption (A10), and considering Time-Period–2, then:  

   P(MS, E│G, M)2  =  P(MS│G, M)2  =    Zm2 

  and: P(MS, E│G, F)2    =  P(MS│G, F)2    =    Zw2 

 Therefore, using the range-estimates from Eqs. (12, 13, & 24) yields, for women: 

  0.690  =  (0.191) / (0.277)   ≤   {P(EA│G, F)2}3  =  Zw2 / d    ≤  1       #  Ratio smallest for high Zw2

(28) or: 0.88   ≤  P(EA│G, F)2    ≤  1 

 and, for men: 

  0.714  =  (0.040) / (0.056)  ≤  {P(EA│G, M)2}3  =  Zm2 / c    ≤  1        #  Ratio smallest for high Zm2

(29) or: 0.89   ≤  P(EA│G, M)2   ≤  1

 Even dropping the assumption of three, equally likely, conditionally independent events, a 

 sufficient environmental exposure (whatever this entails) must be experienced by more than 69% of the 

(30)        susceptible population. Thus, from the above, we conclude that:          0.690   ≤   P(E│G)   ≤   1 

(31)        If envirnmental experience is independent of susceptibility, then:         0.690   ≤   P(E)   ≤   1  

       Consequently, at present, both genders seem to experience, very commonly, each of the necessary 

                environmental events involved in MS pathogenesis, (i.e., these are population-wide events). 

                             Of course, from Eq. (24), for both men and women:         P(MS│G, E)  <<  1              

               Thus, it must be that certain genetic backgrounds are only (or more) responsive to certain environmental

               experiences. For example, if all genotypes required the (EA) environmental event (e.g., vitamin D deficiency)4

               but some genotypes required a longer duration or greater intensity of exposure to produce MS than others,  

               then this might help to explain the low penetrance ranges for the parameters (c) and (d) incicated in Eq. (24). 
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