Supporting Information to:

In silico Target Fishing for Rationalized Ligand Discovery Exemplified on Constituents of *Ruta graveolens*

Judith M. Rollinger¹, Daniela Schuster², Birgit Danzl¹, Stefan Schwaiger¹, Patrick Markt², Michaela Schmidtke³, Jürg Gertsch⁴, Stefan Radurner⁴, Gerhard Wolber², Thierry Langer², Hermann Stuppner¹

Affiliation

¹ Institute of Pharmacy, Pharmacognosy, and Center for Molecular Biosciences, University of Innsbruck, 6020 Innsbruck, Austria

² Institute of Pharmacy, Pharmaceutical Chemistry, and Center for Molecular Biosciences,

University of Innsbruck, Innsbruck, Austria

³ Institute of Virology and Antiviral Therapy, Friedrich Schiller University, Jena, Germany

⁴ Department of Chemistry and Applied Biosciences, ETH Zurich, Zürich, Switzerland

Correspondence

A. Univ.-Professor Mag. pharm. Dr. Judith Maria Rollinger

Institute of Pharmacy, Pharmacognosy and Center for Molecular Biosciences University of Innsbruck Innrain 52c A-6020 Innsbruck Austria Phone: +43/512/507 5308 Fax: +43/512/507 2939 judith.rollinger@uibk.ac.at Fig. 1S Hitting pharmacophore models from the parallel screen of compounds 1 - 16 for the targets AChE, HRV coat protein, and CB₂ receptor.

AChE inhibitor models:

HRV coat protein inhibitor models:

CB₂ ligands model:

The generation and experimental validation of the hitting CB₂ pharmacophore model has just been presented by Markt et al. [46]. For its generation, five highly active and selective CB₂ agonists were submitted to conformational analysis and aligned employing the HipHop algorithm implemented in Catalyst 4.11 (Accelrys Inc.). The resulting pharmacophore model consists of one hydrogen bond acceptor, one hydrophobic, two hydrophobic aliphatic, and one hydrophobic aromatic feature. The shape of the highly active agonist AM1241 was added to the model to improve its restrictiveness.

Fig. 2S Ligand-based pharmacophore model for CB_2 agonists. Chemical features of the model are colour-coded: hydrogen bond acceptor – green; hydrophobic – cyan; hydrophobic aromatic – dark blue; hydrophobic aliphatic – light blue; shape – grey.

Fig. 3S Alignment of selected bioactive hits to a hitting pharmacophore model. **A**: Tacrinbased AChE inhibitor pharmacophore model. **B**: Compound **1** fitted into the tacrin-based model. **C**: R 61837-based model for HRV coat protein inhibitors. **D**: Compound **1** fitted into the R 61837-based model. **E**: The highly potent CB₂ agonist JWH-267 fitted into the ligandbased CB₂ pharmacophore model. **F**: Compound **3** fitted into the ligand-based CB₂ model. Chemical features of the models are colour-coded. Structure-based models (Fig. **3S A-D**; LigandScout): hydrogen bond acceptor: red; hydrophobic: yellow; exclusion volumes: grey. Ligand-based models (Fig. **3S E, F**; Discovery Studio): hydrogen bond acceptor: green; hydrophobic: cyan; hydrophobic aromatic: dark blue; hydrophobic aliphatic: light blue; shape: grey. For a clearer depiction of the fitting conformations, no excluded volume spheres are shown for the virtual hits.

