SUPPLEMENTARY DATA

Binding of Hairpin Pyrrole and Imidazole Polyamides to DNA:

Relationship between Torsion Angle and Association Rate Constants

Yong-Woon Han, Tomoko Matsumoto, Hiroaki Yokota, Gengo Kashiwazaki, Hironobu Morinaga, Kaori Hashiya, Toshikazu Bando, Yoshie Harada and Hiroshi Sugiyama

Supplementary information Contents

Table S1. Binding affinity of 1–5

Figure S1. Sequences of 5'-biotinylated hairpin DNAs (ODN6–10).

Figure S2. SPR sensorgrams for the interaction of Py-Im polyamides with hairpin DNAs immobilized on a sensor chip SA.

Figure S3. Measurements of the calculated structures in Figure 4.

Figure S4. Measurements of the structures of 4-ring Py-Im polyamides derived by *ab initio* quantum chemical calculation.

Py-Im	n polyamide ^a	$K_{\rm D} (10^{-9} { m M})$	$k_{\rm a} (10^4 { m M}^{-1}{ m s}^{-1})$	$k_{\rm d} \ (10^{-2} \ { m s}^{-1})$	$\Delta G^{\rm Ob}$ (kcal/mol)
1	($6.1 \pm 0.62 \ (0.41)^{\circ}$	180 ± 25	1.1 ± 0.15	-11.2
2		$13 \pm 1.0 \ (0.28)^{d}$	180 ± 31	2.3 ± 0.36	-10.8
3		$25 \pm 5.8 (1.4)^{\circ}$	51 ± 24	1.3 ± 0.61	-10.4
4		$110 \pm 51 \ (0.44)^{\rm f}$	18 ± 9.3	2.0 ± 0.15	-9.5
5		$250 \pm 66 \ (0.22)^{g}$	8.9 ± 4.7	2.2 ± 0.70	-9.0

Table S1. Binding affinity of 1–5.

^aClosed circle and Open circle indicate Im and Py, respectively. The target DNAs of **1–5** are ODN6, 7, 8, 9 and 10, respectively.

^bΔG⁰ values are calculated from the equation, = -RTln(1/ K_D), where R is universal gas constant, 1.987 cal/mol•K; T is absolute temperature in a unit of K, here 298.15 K. ^cThe number in parentheses indicates the relative affinity to **1**/ODN1 in Table 1. ^dThe number in parentheses indicates the relative affinity to **2**/ODN2 in Table 1. ^eThe number in parentheses indicates the relative affinity to **3**/ODN3 in Table 1. ^fThe number in parentheses indicates the relative affinity to **4**/ODN4 in Table 1.

ODN6	5' -XGCC ATATA GGC ^T T 3' -CGG TATAT CCG _T T
ODN7	5' -XGCC ATATC GGC ^T T 3' -CGG TATAG CCG _T T
ODN8	5' -XGCC ATAGC GGC ^T T 3' -CGG TATCG CCG _T T
ODN9	5' -XGCC ATCGC GGC ^T T 3' -CGG TAGCG CCG _T T
ODN10	5' -XGCC AGCGC GGC ^T T 3' -CGG TCGCG CCG _T T

Figure S1. Sequences of 5'-biotinylated hairpin DNAs (ODN6–10). X represents biotin. The binding sequences of the Py-Im polyamides are shown in bold.

Figure S2. SPR sensorgrams for the interaction of Py-Im polyamides with hairpin DNAs immobilized on a sensor chip SA. (A) Py-Im polyamide 1 with ODN6 at a concentration range from 1.25×10^{-8} (lowest curve) to 2.0×10^{-7} M (highest curve). (B) Py-Im polyamide 2 with ODN7 at a concentration range from 1.25×10^{-8} (lowest curve) to 2.0×10^{-7} M (highest curve) to 2.0×10^{-7} M (highest curve). (C) Py-Im polyamide 3 with ODN8 at a concentration range from 2.5×10^{-8} (lowest curve) to 4.0×10^{-7} M (highest curve). (D) Py-Im

polyamide **4** with ODN9 at a concentration range from 2.5×10^{-8} (lowest curve) to 8.0×10^{-7} M (highest curve). (E) Py-Im polyamide **5** with ODN10 at a concentration range from 2.5×10^{-8} (lowest curve) to 8.0×10^{-7} M (highest curve).

C 1 2 3 4 Py-Py-Py-Py						
	a (Å)	b (Å)	c (°)	d (°)		
Py1	1.38	5.45	147	16.5		
Py2	1.38	5.45	147	17.9		
Py3	1.38	5.45	147	17.3		
Py4	1.38	5.44	147	13.3		

D Im-Py-Py-Py						
	a (Å)	b (Å)	c (°)	d (°)		
lm1	1.36	5.09	138	0.84		
Py2	1.38	5.45	148	18.1		
Py3	1.38	5.45	147	17.9		
Py4	1.38	5.44	147	13.1		

E Py-Py-Im-Py						
	a (Å)	b (Å)	c (°)	d (°)		
Py1	1.38	5.45	147	16.2		
Py2	1.38	5.45	147	14.4		
lm3	1.36	5.10	138	0.75		
Pv4	1.38	5.44	147	12.3		

F Im	1-Py-Im-Py	/		
	a (Å)	b (Å)	c (°)	d (°)
lm1	1.36	5.09	138	0.70
Py2	1.38	5.45	148	14.1
lm3	1.36	5.10	138	0.39
Py4	1.38	5.44	147	12.7

G	lm-lm-	lm-lm
u u	Im-Im-	im-im

	a (Å)	b (Å)	c (°)	d (°)
lm1	1.37	5.10	138	0.61
lm2	1.37	5.10	138	1.20
lm3	1.36	5.09	138	2.39
lm4	1.36	5.10	138	0.21

Figure S3. Measurements of the calculated structures in Figure 4. (A) Py ring

structure. a, b, c, and d indicate the C-N bond length in the contiguous amide, the

distance between two Ns in the previous and the contiguous amide, the angle between

the two ring-to-amide bonds in the Py ring, and the dihedral angle between the Py ring

and the contiguous amide, respectively. (B) Im ring structure. a, b, c, and d are the same as in (A). (C) The results from Py-Py-Py-Py. (D) The results from Im-Py-Py-Py.(E) The results from Py-Py-Im-Py. (F) The results from Im-Py-Im-Py. (G) The results

from Im-Im-Im-Im.

	1	2	3	4
D	1	Dv	Dv	Dv

Α

۲١	/-Py-Py-P'	y		
	a (Å)	b (Å)	c (°)	d (°)
Py1	1.36	5.42	146	21.0
Py2	1.36	5.41	146	21.0
Py3	1.36	5.42	146	21.1
Py4	1.36	5.41	146	15.6

В Im-Pv-Pv-Pv b (Å) **c** (°) a (Å)

	a (Å)	b (Å)	c (°)	d (°)
lm1	1.34	5.06	137	0.10
Py2	1.36	5.41	146	20.4
Py3	1.36	5.41	146	20.7
Py4	1.36	5.41	146	15.2

С Py-Py-Im-Py

	a (Å)	b (Å)	c (°)	d (°)
Py1	1.36	5.42	146	20.4
Py2	1.36	5.41	146	17.4
lm3	1.34	5.05	137	0.53
Py4	1.36	5.41	146	15.3

D Im-Pv-Im-Pv

	a (Å)	b (Å)	c (°)	d (°)
lm1	1.34	5.06	137	0.11
Py2	1.36	5.41	146	17.1
lm3	1.34	5.05	137	0.38
Py4	1.36	5.41	146	15.1

Е Im-Im-Im-Im

	a (Å)	b (Å)	c (°)	d (°)
lm1	1.35	5.06	137	0.00
lm2	1.34	5.06	137	0.23
lm3	1.34	5.06	137	0.36
lm4	1.34	5.07	137	0.03

Figure S4. Measurements of the structures of 4-ring Py-Im polyamides derived by

ab initio quantum chemical calculation. a, b, c, and d are the same as those in Figure

S1. (A) The results for Py-Py-Py. (B) The results for Im-Py-Py-Py. (C) The results

for Py-Py-Im-Py. (D) The results for Im-Py-Im-Py. (E) The results for Im-Im-Im.