
 - 1 - 

Distributional fold change test – a statistical approach for 
detecting differential expression in microarray experiments 

Vadim Farztdinov, Fionnuala McDyer  

Affiliation:  
Almac Diagnostics, 19 Seagoe Industrial Estate, Craigavon, BT63 5QD, UK 

 

 

Appendix.  
 

Null features distribution and variance threshold 
 

As mentioned in section “Distributional Fold Change test: General approach” of the paper, 

the log fold change d and total variance vT depend on average expression µ. We suppose that 

the number of features is large and enough to accurately define these dependences, which 

will be exact in the limit Np → ∞. 

 

Consider features in a slice (µ  – ∆µ/2, µ + ∆µ/2) of three-dimensional space of log fold 

change d, log total variance log2vT and average expression µ. With the assumption of Np → 

∞, this slice can be made infinitesimally thin. The two– dimensional probability distribution 

f(log2vT, d | µ ) is used below to find the expectation of log variance LV = log2vT, conditioned 

on the value of log fold change. According to our assumption, the unconditional distribution 

function can be considered as a mixture of unregulated (EE: equally expressed) and regulated 

(DE: differentially expressed) features 

( ) ( ) ( )µπµπµ |,1|,)|,( dLVfdLVfdLVf EEDE −+= .    (A1) 
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Here π is prior probability of a feature to be differentially expressed and is supposed to be 

very small, π <<1. For unregulated features the probability distribution can be written as a 

product of two marginal distributions  
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|,, . Properties of the differentially expressed features probability 

distribution generally are not known, so we will suppose only that  

( ) <<= µ|0,dLVf DE ( )µ|0, =dLVf EE      (A2.b) 

and  

( ) <<µ|,dLVf DE ( )µ|,dLVf EE  for LV << E[LV |d=0,µ].     (A2.c) 

These assumptions are the grounds for applicability of fold change and variance filters. Using 

(A2.a) and notation ( ) =µ|,, dLVF EEDE  ( ) VdLdVLf
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The relationship (A3) can be simplified if we find such a value LVTh at which ( )µ|,dLVFDE  

< or ≈ ( )µ|,dLVFEE and therefore with account of π <<1 one can replace the expression in 

curly brackets by 1. Note that due to (A2.c) this can be done for LV << E[LV |d=0,µ]. To find 
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a higher threshold let one consider the conditional expectation of logarithm of total variance 

(νT) of the feature expression, which depends on internal variance vI and log fold change d 
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One can show that  

[ ] [ ]µµ ,0|E,0|E =>> dLVdLV ,  (A5) 

i.e. for a given µ, the conditional expectation of logarithm of total variance has a minimum at 

d = 0. This property can be used to set up a threshold:  

[ ]µ,0|Elog2 === dLVvLV EETh . (A6) 

Neglecting the difference between [ ]µ,0|E =dLV  and [ ]EEdLV µ,0|E =  (with the help of 

(A2.b)) and taking into account that for log2vT the mean and the median are close one can 

derive that  

( )µ|,dLVF ThEE  > (or  ≈) ( )µ|,dLVF ThDE
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The relationship can be further simplified for the range of |d| around d = 0, where ( )µ|df M
DE  

is below or approximately equal to ( )µ|df M
EE :  

( )µ|,dLVF ThEE  > (or  ≈) ( )µ|,dLVF ThDE .  (A7) 

It allows reducing eq. (A3) to   

( ) ( )dLVdLVfdf
ThLV

M
EE ∫∝

0

|,| µµ .  (A8) 

We will suppose that approximation (A8) holds for all d values, that is for all d and all log2vT 

< LVTh(µ) the distribution function ( ) ≈µ|,dLVf  ( )µ|,dLVf EE . The threshold (A6) is an 

approximate way to separate a subset of unregulated (null) features:  
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{ d0(µ)}:  log2vT < LVTh(µ), (A9) 

and can be used as a boundary to set up a variance filter. We supposed above that 

( )µ|df M
EE ~ N(0, σ0(µ)2). Basing on approximation (A8) and using the definition (A9) the 

dependence σ0(µ) can be estimated from  

σ0(µ)  =1.4826×MAD({ d0(µ)}),  (A10) 

where MAD stands for median absolute deviation.  

 

Our aim was to develop an approach for finding the FC distribution of null features which 

was both simple and transparent, while recognizing more elaborate approaches could be 

developed. Implementation of the algorithm is based on splitting the expression range into n 

(= 11) slices, finding LVTh (µι) and ln(σ0(µι)) in each, and fitting polynomial approximations 

(3rd order), which are then used to interpolate dependences of LVTh (µ) and ln(σ0(µ)) over the 

whole range of expressions. Number and width of expression intervals and the polynomial 

order are tuneable parameters and can be adjusted if necessary (see Additional file 2 for 

details). They were selected to provide essentially equal-sized feature subsets: as equally 

spaced quantiles of average expression µ cumulative distribution. Only the lowest quantile 

was made larger, as there is little interest in features with very low expression and two 

highest quantiles were made progressively smaller in order to be able to get proper 

dependence of highly expressed features and to catch the effects of expression saturation at 

high concentration levels. The third polynomial order was selected as the lowest one allowing 

to provide a smooth curve encompassing the potentially different behaviour in three ranges: 

low expression range dominated by noise, medium expression range with strong signal and 

high expression range were saturation effects can be noticeable. An example of complicated 
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expression dependence one can find in Figure 1, where the conditional expectation E[LV | µ] 

is shown as red line. 

 

Figure 2 shows an application of condition (A9) to remove unregulated features in data set 

GSE6011 using implementation of the algorithm with default settings.  

 

Selection of sample sets for testing 
 

For evaluation of the performance of the DFC test we decided to use 36 publicly available 

Homo sapiens microarray sample sets listed in [9] with a portion of discovered DEGs 

experimentally validated by a RT-PCR. This collection of sample sets was used to compare a 

large number of feature selection methods therefore making our comparison easier.  
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Figure A1. Scatterplot and histograms of sample sets distribution over Ns (vertical axis) and 

NPC (horizontal axis). Left panel: 36 sample sets [9]; right panel: selected 11 sets.  

 

Analysis of the sample sizes in these sets and the number of DEGs validated showed that this 

list is biased towards small sample sets Ns ≤ 10 and/or small number of verified DEGs NPC ≤ 

10 – see for example Figure A1 – there are 33% of sets with sample size Ns ≤ 10 and 72% of 
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sets having NPC ≤ 10. Having a large number (NPC >>1) of verified DEGs is very important 

for building representative ROC curves and for the estimation of area and partial area under 

ROC curves, therefore reduction of the sets is required.  

 

The set selection procedure was applied as follows: from the 36 FF sample sets listed in [9] 

we selected all sets with number of validated probesets NPC > 10. In this list, the sets with 

small number of samples Ns ≤10 were overrepresented, comprising 50% against 33% in full 

set. Therefore 2 sets with very small number of samples (Ns = 6 (NPC=12) and Ns = 8 

(NPC=11)) were removed. To the remaining 8 sets, we added 3 sets – set with Ns =37 

(NPC=10), set with Ns =22 (NPC=9) and Ns =18 (NPC=8). This selection procedure (see Table 1 

for details and Figure A1) has significantly improved distribution over the number of verified 

DEGs and at the same time the distribution over the sample sizes is close to that of the whole 

set of 36 data sets – the Kolmogorov-Smirnov test [A1,A2] p-value for similarity is 0.96 .  

 

Table A1 - Comparison of the full set of 36 sets [9] and reduced set of 11 sets.  

N of checked DEGs NPC ≤10 10<NPC≤20 20<NPC≤40 NPC >40 

Full set  26 7 1 2 

Selected reduced set 3 5 1 2 

 

Sample size Ns ≤ 10 10< Ns ≤ 20 20< Ns ≤ 30 Ns > 30 

Full set  12 13 9 2 

Selected reduced set 3 5 2 1 

 

The reduced number of sets contains around 30% of small size sets with Ns < 10. Although 

small sample size sets are nowadays seldom and are used mainly in pilot experiments or in 
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cell line studies (see, for example [1], chapter 3) we kept them in order to have fair 

comparison with moderated t- test methods [4-7], of which shrinkage t-test [7] is good 

representative (see below). Note also that the selected sample set is not only similar to the full 

set [9] distribution over the sample sizes, but also produces the same best testing method, 

when DFC test is not considered.  

 

DFC test evaluation  
 

Performance of the DFC test was compared with the following tests (used also in comparison 

[9]) : average difference (AD) (standard log fold change) test; weighted average difference 

(WAD) test[9], moderated t-test [4](modT), significance analysis of microarrays test [5] 

(samT), intensity based moderated t-test [6] (ibmT), standard t-test, and shrinkage t-test [7] 

(shrinkT), same as CAT(diag) [14]. The AUC values for MAS5- and RMA-pre-processed 

data for the selected experimental data sets (described in Table 1 in the paper), are shown in 

Table A2.  

 

One can see that, on average, the DFC test produces higher AUC than any of the t-test based 

methods [4-7]. On MAS5 pre-processed data, it is the best among the all tests in comparison, 

while for the RMA pre-processed data it is the second best after AD method.  

 

The observed AUC values are very close to 1 and consequently, their distributions and 

distributions of their differences cannot be well approximated by normal distributions. To 

obtain a more comprehensive estimation of the significance of difference, we applied paired-

sample single sided t-test to logit transformed AUC values, LTA = 0.5⋅ln(AUC/(1-AUC)). 

The logit transformation [39] maps the interval (0,1) onto (–∞, +∞) and makes transformed 

variables more normally distributed and therefore t-test better applicable. The differences 
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LTAmethod – LTADFC are shown in Figure A2. One can see that DFC test has either higher 

AUC or the difference is very small when compared to any of the moderated t-test methods 

[4-7]. There is only one data set ( first set in the list with Ns = 22; NPC = 9) for which the 

WAD method is dramatically better than all other methods on MAS5 pre-processed data and 

AD method is dramatically better than all others for RMA pre-processed data.  

 

The p-values for significance of differences in LTAs, as measured by paired-sample single 

sided t- test t(LTAi – LTAj) are presented in Table A3. It is seen that for MAS5 pre-processed 

data the DFC test is significantly (on a significance level better than 0.05) better than any of 

the tests except WAD. For RMA pre-processed data DFC test is significantly better than any 

of the t-test based methods and is equally well as AD. Although WAD test is the second only 

to the t-test in terms of poor performance for RMA pre-processed data, the t-test did not 

showed significant difference because of very large variance in WAD data – see Figure A2.  
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Table A2 - AUC performance of different tests 

AUC performance of fold change based tests and t-test based tests on MAS5 and RMA pre-processed data from data sets described in Table 1. 

NKa – data set’s number in the description file of ref [9]; AD – average (logFC) difference; WAD – weighted average difference [9],modT – 

moderated t-test [4], samT – significance analysis of microarrays test [5]; ibmT – intensity based moderated t-test [6]; shrinkT – shrinkage t-test 

values calculated with CAT-test [14], option ‘diagonal’; aTest values taken from ref [9]; bAverage is calculated for logit transformed AUC 

values, LTA = 0.5⋅ln(AUC/(1-AUC)) and then transformed back to AUC scale. 

 

AUC for MAS5 pre-processed data 

NKa Ns NPC ADa WADa modTa samTa ibmTa t-test shrinkT DFC 

5 22 9 0.9112 0.9910 0.9376 0.9386 0.9515 0.9291 0.9440 0.9700 

6 22 77 0.9768 0.9835 0.9814 0.9847 0.9814 0.9643 0.9826 0.9853 

8 14 13 0.9983 0.9988 0.9986 0.9988 0.9985 0.9978 0.9984 0.9987 

9 7 16 0.8281 0.8721 0.8317 0.8397 0.8485 0.7920 0.8362 0.8620 

11 18 8 0.9972 0.9979 0.9956 0.9977 0.9959 0.9899 0.9958 0.9974 

15 20 19 0.9765 0.9903 0.9790 0.9838 0.9806 0.9717 0.9808 0.9885 

18 6 13 0.9520 0.9878 0.9791 0.9786 0.9871 0.9632 0.9785 0.9856 

24 20 40 0.9765 0.9927 0.9963 0.9962 0.9964 0.9949 0.9968 0.9970 

25 20 62 0.9643 0.9846 0.9930 0.9903 0.9933 0.9912 0.9931 0.9928 

30 37 10 0.8539 0.8730 0.8677 0.8629 0.8702 0.8607 0.8674 0.9094 

36 7 17 0.9347 0.9414 0.9420 0.9447 0.9380 0.9161 0.9429 0.9379 

Averageb    0.9695 0.9855 0.9807 0.9823 0.9823 0.9718 0.9812 0.9857 
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AUC for RMA pre-processed data 

NKa Ns NPC AD WAD modT samT ibmT t-test shrinkT DFC 

5 22 9 0.9978 0.9956 0.9321 0.9495 0.9386 0.9121 0.9284 0.9681 

6 22 77 0.9677 0.9506 0.9727 0.9736 0.9732 0.9474 0.9724 0.9718 

8 14 13 0.9980 0.9959 0.9986 0.9989 0.9987 0.9985 0.9978 0.9990 

9 7 16 0.8902 0.8575 0.8284 0.7846 0.8350 0.7553 0.8242 0.8318 

11 18 8 0.9979 0.9875 0.9928 0.9932 0.9935 0.9865 0.9925 0.9957 

15 20 19 0.9923 0.9939 0.9812 0.9837 0.9829 0.9759 0.9822 0.9889 

18 6 13 0.9939 0.9694 0.9860 0.9915 0.9880 0.9627 0.9815 0.9894 

24 20 40 0.9941 0.9795 0.9977 0.9977 0.9978 0.9972 0.9980 0.9980 

25 20 62 0.9836 0.9641 0.9798 0.9806 0.9814 0.9760 0.9825 0.9849 

30 37 10 0.9798 0.9805 0.9812 0.9819 0.9809 0.9754 0.9813 0.9789 

36 7 17 0.9200 0.8976 0.9430 0.9458 0.9421 0.9389 0.9437 0.9411 
Averageb    0.9890 0.9782 0.9823 0.9840 0.9834 0.9745 0.9815 0.9861 
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Figure A2. The differences LTAmethod – LTADFC. for data sets from Table 1. Set N is 

the number of the set in the Table 1. The tests are the same as in Table A2.  

 

Table A3 - Significance of differences in AUC.  

Paired-sample single sided t- test p-values calculated for LTA = 0.5×ln(AUC/(1-

AUC)). Notations are the same as in Table A2.  

t-test for MAS5 pre-processed data 

 AD WAD modT samT ibmT t-test shrinkT DFC 

AD  0.0023 0.0275 0.0043 0.0170 0.3772 0.0242 0.0017 

WAD 0.9977  0.8838 0.8217 0.8207 0.9910 0.8639 0.4648 

modT 0.9725 0.1162  0.1256 0.0490 0.9999 0.1194 0.0017 

samT 0.9957 0.1783 0.8744  0.4972 0.9977 0.7750 0.0131 

ibmT 0.9830 0.1793 0.9510 0.5028  0.9999 0.8643 0.0055 

t-test 0.6228 0.0090 0.0001 0.0023 0.0001  0.0001 0.0000 

Shrink t 0.9758 0.1361 0.8806 0.2250 0.1357 0.9999  0.0017 

DFC 0.9983 0.5352 0.9983 0.9869 0.9945 1.0000 0.9983  

t-test for RMA pre-processed data 

 AD WAD modT samT ibmT t-test shrinkT DFC 

AD  0.9973 0.8946 0.8547 0.8670 0.9733 0.9081 0.7771 

WAD 0.0027  0.2975 0.2145 0.2426 0.6505 0.3370 0.1074 

modT 0.1054 0.7025  0.0606 0.0011 0.9991 0.7897 0.0083 

samT 0.1453 0.7855 0.9394  0.7437 0.9985 0.9139 0.0431 

ibmT 0.1330 0.7574 0.9989 0.2563  0.9995 0.9488 0.0178 

t-test 0.0267 0.3495 0.0009 0.0015 0.0005  0.0025 0.0003 

Shrink t 0.0919 0.6630 0.2103 0.0861 0.0512 0.9975  0.0103 

DFC 0.2229 0.8926 0.9917 0.9569 0.9822 0.9997 0.9897  
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Table A4 - Correlation coefficients ρρρρ for MAS5 and RMA pre-processed 

data.  

Correlation coefficients ρTest(LTAMAS5 , LTARMA ) of logit transformed MAS5 and 

RMA AUC values, LTA = 0.5×ln(AUC/(1-AUC)). Second row shows the p-values 

for the difference in correlation coefficients of particular test and DFC test. Notations 

are the same as in Table 2 

 

 AD WAD modT samT ibmT t-test shrinkT DFC 

ρ(MAS5,RMA)  0.64 0.71 0.87 0.85 0.87 0.88 0.87 0.92 

p(ρ – ρDFC) 0.05 0.09 0.33 0.28 0.34 0.36 0.31   

 

 

One of the most important characteristics of the method is its ability to find DEGs 

independently of the pre-processing method applied to data. This should be evident 

from AUC as an overall characteristic of the test’s performance. Calculation of 

correlation coefficients between logit transformed AUCs for MAS5 and RMA pre-

processed data (see Table A4) showed that the DFC test has the highest correlation 

between AUCs, ρDFC = 0.92, although its prevalence is not high enough to make it 

significantly different from other t-test based tests. Difference in correlation 

coefficients between DFC and AD and WAD tests can be accepted as significant, but 

only on 0.1 significance level.  

 

Behaviour of the fold change methods on differently pre-processed data is very 

inconsistent, AD test performs the poorest for MAS5 pre-processed data, while WAD 

is the second poorest (after t-test). Both methods have the lowest correlation between 
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AUC values obtained on MAS5 and RMA pre-processed data. This makes their 

application rather limited even though they potentially can achieve very good 

performance, as it will be always bounded to particular choice of pre-processing 

method. From Figure A2 it is seen that a good performance of WAD method on 

MAS5 data and AD method on RMA data is due to one data set only (the first set in 

the list with Ns = 22; NPC = 9), which has a small number of verified DEGs.  

 

We conclude that DFC test was consistently the best, independently of pre-processing 

method applied to the data, and performed equally well with WAD on MAS5 pre-

processed data and with AD on RMA pre-processed data. This finding corroborates 

very well with the results of [9] where, using the large set of 36 data sets (though 

biased to the small set sizes and/or small number of verified DEGs), it was found that 

the WAD test performed the best on MAS5 pre-processed data and AD on RMA pre-

processed data.  

 

We believe that the very good performance of WAD and AD tests (apart from being a 

consequence of the variance dependence of on expression under particular pre-

processing, mentioned in the Discussion) is the consequence of bias of testing data 

sets towards the small set sizes and/or small number of verified DEGs. To check this 

we narrowed the selection of sets to only those with large sample size Ns > 10. 

Results, presented in the next section show that both WAD and AD test are behind 

DFC and moderated t-test type methods [4-7] independent of the pre-processing 

method applied.  
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Large data sets 
 

Sample set selection procedure was as follows: from the 36 FF sample sets listed in 

[9] we selected all sets with number of validated probesets NPC > 10 and with number 

of samples in set Ns > 10. This resulted in 5 sets (see Figure A1), to which we added 

one set with Ns =37, lying on the selection boundary (NPC=10). The resulting sample 

is presented in Table A5.  

 

Table A5 - Large sample size selection of data sets 

Large sample size selection of data sets from GEO database [24]. Samples in all data 

sets were profiled on Affymetrix GeneChip HG-U133A microarrays with 22283 

probesets. NA – number of samples in condition A, NB – number of samples in 

condition B, NP – number of probesets checked by RT PCR. Total number of 

probesets, checked by RT PCR is 221. For easy access to the data sets detailed 

information, we provide in the last column NKa – the data sets number in the 

description file of ref [9]  

 

GEO Data set NA NB NP NKa 

GSE9499 15 7 77 6 
GSE2638 and 2639 7 7 13 8 
GSE6344 10 10 19 15 
GSE6740_1 10 10 40 24 
GSE6740_2 10 10 62 25 
GSE6011 14 23 10 30 

 

 

Comparison of AUCs revealed that DFC test has the highest average AUC among the 

methods in comparison – see Table A6. Both WAD and AD tests are behind DFC and 

moderated t-test type methods [4-7] independent on pre-processing method applied. 

The advantage of DFC test was evaluated with paired-sample single sided t- test 

t(LTAi – LTAj) and results are presented in Table A7. It is seen that for MAS5 pre-
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processed data the DFC test is significantly (on a significance level better than 0.05) 

better than any of the tests except WAD. For RMA pre-processed data the higher 

performance of DFC test is much less pronounced.  

 

Note also that there is no difference in performance of moderated t-tests [4-7], all 

produce the same average AUC, 0.989 for MAS5 pre-processed data and 0.991 for 

RMA pre-processed data (see Table A6).  

 

Table A6 - AUC performance of different tests 

AUC performance of fold change based tests and t-test based tests on MAS5 and 

RMA pre-processed data from data sets described in Table 1. Ns – sample size of a 

set; methods in comparison are the same as in Table A2; aTest values taken from ref 

[9]; bAverage is calculated for logit transformed AUC values, LTA = 0.5⋅ln(AUC/(1-

AUC)) and then transformed back to AUC scale. 

 

AUC for MAS5 pre-processed data 

Ns ADa WADa modTa samTa ibmTa t-test shrinkT DFC 

22 0.9768 0.9835 0.9814 0.9847 0.9814 0.9643 0.9826 0.9853 

14 0.9983 0.9988 0.9986 0.9988 0.9985 0.9978 0.9984 0.9987 

20 0.9765 0.9903 0.9790 0.9838 0.9806 0.9717 0.9808 0.9885 

20 0.9765 0.9927 0.9963 0.9962 0.9964 0.9949 0.9968 0.9970 

20 0.9643 0.9846 0.9930 0.9903 0.9933 0.9912 0.9931 0.9928 

37 0.8539 0.8730 0.8677 0.8629 0.8702 0.8607 0.8674 0.9094 

Averageb  0.9776 0.9879 0.9887 0.9891 0.9889 0.9841 0.9890 0.9912 

AUC for RMA pre-processed data 

Ns ADa WADa modTa samTa ibmTa t-test shrinkT DFC 

22 0.9677 0.9506 0.9727 0.9736 0.9732 0.9474 0.9724 0.9718 

14 0.9980 0.9959 0.9986 0.9989 0.9987 0.9985 0.9978 0.9990 

20 0.9923 0.9939 0.9812 0.9837 0.9829 0.9759 0.9822 0.9889 

20 0.9941 0.9795 0.9977 0.9977 0.9978 0.9972 0.9980 0.9980 

20 0.9836 0.9641 0.9798 0.9806 0.9814 0.9760 0.9825 0.9849 

37 0.9798 0.9805 0.9812 0.9819 0.9809 0.9754 0.9813 0.9789 
Averageb  0.9900 0.9838 0.9907 0.9914 0.9912 0.9878 0.9906 0.9923 
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Table A7  - Significance of differences in AUC.  

Paired-sample single sided t- test p-values calculated for LTA = 0.5×ln(AUC/(1-

AUC)). Notations are the same as in Table A2.  

 

t-test for MAS5 pre-processed data 

 AD WAD modT samT ibmT t-test shrinkT DFC 

AD  0.0066 0.0484 0.0243 0.0472 0.1881 0.0504 0.0124 

WAD 0.9934  0.3961 0.2807 0.3688 0.8248 0.3644 0.0659 

modT 0.9516 0.6039  0.3421 0.2105 0.9953 0.2903 0.0230 

samT 0.9757 0.7193 0.6579  0.5823 0.9729 0.5572 0.0272 

ibmT 0.9528 0.6312 0.7895 0.4177  0.9972 0.4169 0.0203 

t-test 0.8119 0.1752 0.0047 0.0271 0.0028  0.0054 0.0015 

Shrink t 0.9496 0.6356 0.7097 0.4428 0.5831 0.9946  0.0225 

DFC 0.9876 0.9341 0.9770 0.9728 0.9797 0.9985 0.9775  

t-test for RMA pre-processed data 

 AD WAD modT samT ibmT t-test shrinkT DFC 

AD  0.9575 0.3890 0.2753 0.3087 0.7539 0.4118 0.1383 

WAD 0.0425  0.1346 0.1029 0.1146 0.2848 0.1421 0.0706 

modT 0.6110 0.8654  0.0395 0.0151 0.9877 0.5624 0.0555 

samT 0.7247 0.8971 0.9605  0.7705 0.9968 0.7635 0.1228 

ibmT 0.6913 0.8854 0.9849 0.2295  0.9959 0.7533 0.0804 

t-test 0.2461 0.7152 0.0123 0.0032 0.0041  0.0608 0.0021 

Shrink t 0.5882 0.8579 0.4376 0.2365 0.2467 0.9392  0.0979 

DFC 0.8617 0.9294 0.9445 0.8772 0.9196 0.9979 0.9021  

 

 

 

ROC and SPA curves 
 

Figures below show ROC (second column) and SPA (third column) curves of all 11 

datasets analysed in the paper. The dataset names are provided in the first column and 

dataset order is the same as in Table 1. To reveal the differences in dependences at 

low values of FPR, plots are presented on log10 FPR scale. Plots for MAS5 and RMA 

pre-processed data are shown separately. 
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MAS5 pre-processed data 
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RMA pre-processed data 
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