
Page 1 / 30 
 

Supplementary Information 

Pu Wang, Timothy Hunter, Alexandre M. Bayen, Katja Schechtner & Marta C. González 

 

TABLE OF CONTENTS 

 

I.   DATA 

A. Mobile Phone Data and Census Tract Data 2 

B.    Road Network Data   4 

 

II.  METHOD 

A. Estimation of the Transient OD for Vehicle Users  6 

B.     Incremental Traffic Assignment 15 

C.    Estimation of Travel Time from GPS Probe Data 16 

D.    Validation   20 

 

III.  RESULTS 

A.    Supplementary Results 22 

B.    Statistical Analysis  27 

 

REFERENCES   29 

 

 



Page 2 / 30 
 

I. DATA  

A. 

This section describes the data used in the main article. To this day these are the most extensive data 

sets which have been used to perform road usage studies. The San Francisco Bay Area mobile phone 

data are collected by a US mobile phone operator and contain about half a million customers. Each time 

a person uses a phone (call/text message/web browsing) the time and the mobile phone tower providing 

the service is recorded. This altogether generates 374 million location records in the three week 

observational period. A voronoi tessellation is used to estimate the service area of a mobile phone tower 

(1, 2). It provides the rough region where a mobile phone user can be located by his/her phone usage 

(Fig. S1A). The voronoi polygons located at the border are reshaped along the outline border of the San 

Francisco Bay Area census tracts to guarantee that they have reasonable service areas (Fig. S1A). 

Among these half a million users, we select 356,670 users to study the travel demands of the Bay Area 

residents (Table S1).  

Mobile Phone Data and Census Tract Data 

Properties: Bay Area Boston Area 
Population 5,434,155 3,528,930 
Area (mile2) 3,746 1,825 
Population Density (/mile2) 1,451 1,934 
Avg. Car Pool Size (people per car) 2.25 2.16 
Mobile Phone Users 356,670 683,001 
Total Length of Road Segments (miles) 15558.4 10346.5 
Total Length of Road Segments/Population (miles/person) 0.00286 0.00293 
Number of Arterial Roads 21,267 20,638 
Number of Highways (Including Freeways) 3,141 1,267 

Table S1. General information extracted from mobile phone data, census tract data and GIS data. The 
selected mobile phone users represent 6.56% and 19.35% of the population in the two metropolitan 
areas respectively. This is roughly two orders of magnitude larger in terms of population and time of 
observation than the most recent surveys (3). The length of road segments takes into account the num of 
lanes of a road segment. 

In the Boston Area the coordinates of the recorded locations are estimated by a standard 

triangulation algorithm (location data do not come with tower ID). In the three weeks’ observational 
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period, more than 200,000 distinct locations are recorded, this data is aggregated at the census tract level 

to define the location of a phone user (Fig. S1D). Consequently, we select 683,001 users from the one 

million mobile phone users in the Boston Area.  

In both areas the selected mobile phone users have at least one location recorded between 9:00pm to 

7:00am, allowing for the definition of home location in connection with a tower’s service area or a 

census tract. The mobile phone users’ home locations are also defined as the driver sources. We further 

find that a large majority of driver sources are located within dense mobile phone grids or small enough 

census tracts, thus providing accurate spatial resolution for the purpose of this study. The area 

distributions of driver sources are illustrated in Fig. S1B and E, and the respective density of population 

in Fig. S1C and F. 

 
Figure S1. Location data and driver sources. (A) In the Bay Area (BAY), 892 mobile phone towers 
(blue dots) are used by the carrier. The covering areas of the towers are defined by a voronoi tessellation 
(blue polygons). The census tracts are represented by the light grey polygons. (B) The area distribution 
of Bay Area driver sources P(A) quantifies the probability that a driver source has an area A. The areas 
of most driver sources are small, indicating a high accuracy of driver sources’ locations. (C) In the Bay 
Area, the population density of each driver source is calculated by the population of its overlapping 
census tracts. (D) In the Boston Area (BOS) driver sources are defined by census tracts (red polygons, 
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750 in total). Mobile phone users’ coordinates are estimated by a standard triangulation algorithm, 
which results in more than 200,000 distinct locations with a 100m×100m spatial resolution (black dots). 
(E) Same with (B) for the Boston Area. (F) The population density in a Boston Area driver source is 
derived from the census tract data.  

 

 As shown in Fig. S2, we measure the population in each driver source. Since mobile phone towers 

and census tracts are designed to serve similar number of population, we find that diver sources have a 

similar order of magnitude.  

 

Figure S2. The distribution of population in driver sources. N is the population of a driver source. In the 
Bay Area, a driver source is a mobile phone tower’s service area. In the Boston Area, a driver source is a 
census tract.  
 

Users’ privacy is protected by using anonymized user IDs. In addition, the spatial resolution of the 

voronoi lattice or the census tract provides sufficiently large areas to prevent personal location 

identification at an individual level. Furthermore, no individual trajectory is shown in our results.  

 

B. 

The road networks, which include both highways and arterial roads, are provided by NAVTEQ, a 

commercial provider of geographical information systems data (4). The data incorporate the attributes of 

roads needed for the computations presented in this work, in particular the road capacity. The road 

Road Network Data 
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network in the Bay Area contains 21,880 road segments and 11,096 intersections, while the road 

network in the Boston Area contains 21,905 road segments and 9,643 intersections. For each road 

segment, the speed limit sl (miles/hr), the number of lanes l and the direction are extracted from the 

database. According to 2000 Highway Capacity Manual (5) and Reference (6), we estimate the capacity 

C of a road segment as follows: 

 

(1) when the speed limit of a road segment sl≤45, it is defined as an arterial road: 

          C=1,900×l×q (vehicles/hour)        (S1) 

for simplicity, the effective green time-to-cycle length ratio q is selected to be 0.5. 

(2) when the speed limit of a road segment 45<sl<60, it is defined as a highway: 

        C=(1,000+20×sl)×l (vehicles/hour)       (S2)  

(3) when the speed limit of a road segment sl ≥60, it is defined as a freeway: 

        C=(1,700+10×sl)×l (vehicles/hour)       (S3) 

  

 In Fig. S3, we show the distribution of road segment lengths. We find similar distributions in Bay 

Area and Boston Area, albeit the detected maximum length is larger in the Bay Area. 

 

Figure S3. The distribution of road segment lengths. 
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II. METHOD 

A. 

1.  Introduction: 

The Origin-Destination matrices (OD) provide information on flows of vehicles travelling from one 

specific geographical area to another and serve as one of the critical data inputs for transportation 

planning, design and operations (7). Currently OD is usually estimated from household interviews or 

incomplete traffic counts (8, 9). Traditional census and household interviews data fail to generate 

detailed and updated travel demands due to the high cost and low accuracy coupled with this method (8, 

9). Road cameras and loop detectors can record the number of vehicles passing by, yet they are 

expensive to install and prone to errors and malfunctioning (8, 9), and consequently mostly limited to 

highways and freeways (8, 9). GPS data (10) collects location traces of probe vehicles at high 

resolutions (up to one Hz), yet they are not ubiquitous and fail to provide full OD information at a large 

scale. Furthermore, due to privacy issues they are often degraded on purpose (leading to down sampling 

of data), and thus insufficient as a standalone data source. Mobile phone data on the other hand, offer 

enormous amounts of location information, providing us with an opportunity to improve the estimation 

of the OD economically (11). An inherent advantage of mobile phone data comes from their wide 

availability. Because of the generic format of mobile phone data, any methodology relying on their 

analysis can easily be applied to other locations for which GIS data are also available, thus providing a 

unique framework pertinent to a variety of problems.  

 

 2.  Definition of trips and extraction of travel demands: 

Estimation of the Transient OD for Vehicle Users 

The major challenge when estimating travel demands with mobile phone data is embedded in the 

sparse and irregular records (12), in which user displacements (consecutive different recorded locations) 

are usually observed between a long period (i.e. the first location is observed at 8:00am and next 
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location is observed at 6:00pm). To more accurately extract users’ travel demands between zones 

(mobile phone towers’ service areas for the Bay Area and the census tracts for the Boston Area), we 

only record displacements occurring within a short time window. However, the time window we select 

must be long enough in order to ensure that enough travel demand information is extracted. In our 

modelling framework, we set the time window to one hour and define a trip as a displacement occurring 

within one hour in each time period (i.e. Morning Period, Noon & Afternoon Period, etc). Fig. S4 

illustrates a mobile user’s time and location records, using the presented approach; in this example two 

trips are detected. 

 

Figure S4. Illustration of trip definition from a mobile phone user’s billing record. Black lines represent 
phone usage records, for each of them the time and the associated towers (A-D) routing the service are 
recorded. Changes of locations C->D are not defined as a trip, because they do not occur within a 
one-hour time window. Two trips are detected: from 8:00am tower A to 8:50am tower B and from 
9:30am tower B to 9:50am tower C. 
 

3.  Definition of transient OD: 

In the mobile phone data, a user’s location information is lost when he/she does not use his/her 

phone. As Fig. S5 shows, a user is observed to move from zone B to zone C (he/she has calls or text 

messages in zone B and zone C), but his/her initial origin (O) and final destination (D) may actually be 

located in zone A and zone D. Thus, in such cases we lose a segment of the trip information (denoted by 

the dashed blue lines). Even if we only capture the transient origin and destination with the phones, this 

still allows us to capture a large portion of the road usage. Thus, we put forward the transient origin 

destination (t-OD) matrix, which requires only mobile phone data as input, to efficiently and 

economically capture the detailed travel demand information.  
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Figure S5. Illustration of a mobile phone user’s OD, t-OD and home location. The road segments in the 
vicinity of San Francisco downtown are depicted by grey lines and the small black dots are the road 
intersections that lie in the zones (mobile phone towers’ service areas). A driver drives from zone A 
(origin) to zone D (destination), however, he/she may only be detected by phone records at zone B 
(transient origin) and zone C (transient destination). The thick red line is the predicted route from the 
observed t-OD, whereas the dashed blue line represents the missing segment of the route. The driver’s 
home location (driver source) is highlighted in red. 
 

4.  Generation of travel demands independent of the frequency of phone activity: 

Obviously, users with more calls (text messages/web browsing) have more trips being extracted by 

the presented method. So one question arises: will this introduce bias to calculate the distribution of 

travel demands? To answer this question, we first measure the number of transactions (call/text 

message/web browsing) for the Bay Area and Boston Area users. As Fig. S6A shows, we find very 

similar distributions in the two areas. Thus, we use the same criterion to divide the mobile phone users 

into five groups, labelled I to V. The users in group I have less than 10 transactions, representing less 

than 5% of the user base. Group II, III, IV include the users with 10-500 transactions, 500-1,000 

transactions and 1,000-2,000 transactions respectively, which overall represent ~90% of the selected 

users in the two areas. The mobile phone users in group V are extremely heavy users who have more 

than 2,000 transactions.   
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Figure S6. (A) The distribution of the number of transactions. 𝑃𝑃(𝑁𝑁) is the probability that a mobile 
phone user has 𝑁𝑁 transactions in three-week long observational period. Users are divided into five 
groups by the dashed lines and the users in group II, III and IV (the shaded area with grey colour) are 
used to extract trips between zones. (B) The hourly regularity 𝑅𝑅(𝑡𝑡) over a week-long period. It 
measures the probability when the user is found in his or her most visited location during the 
corresponding hour-long period. 
 

We next count the number of trips 𝐹𝐹𝑖𝑖𝑖𝑖  between zone i and zone j in a specific time period: 

          𝐹𝐹𝑖𝑖𝑖𝑖 = ∑ 𝑇𝑇𝑖𝑖𝑖𝑖𝑁𝑁
𝑛𝑛=1 (𝑛𝑛)         (S4) 

where 𝑁𝑁 is the total number of selected users and 𝑇𝑇𝑖𝑖𝑖𝑖 (𝑛𝑛) is the total number of trips that user 𝑛𝑛 made 

between zone i and zone j in the observational period. The number of trips between zones i and zone j is 

then normalized by the total number of trips ∑ 𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖 ,𝑖𝑖  between all zones to obtain the distribution of 

travel demand 𝑃𝑃𝑖𝑖𝑖𝑖 : 

          𝑃𝑃𝑖𝑖𝑖𝑖 = 𝐹𝐹𝑖𝑖𝑖𝑖 /∑ 𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖 ,𝑖𝑖          (S5) 

To test if 𝑃𝑃𝑖𝑖𝑖𝑖  is sensitive to the selection of light or heavy users, we calculate 𝑃𝑃𝑖𝑖𝑖𝑖  for users in group II, 

III, IV and V respectively (we do not use group I users, because they have too few locations recorded). 

We find that the 𝑃𝑃𝑖𝑖𝑖𝑖  calculated from users in group II, III and IV are highly correlated (Pearson 

correlation coefficient PCC>0.93, Fig. S7), indicating that the distribution of travel demands is not 
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sensitive to the selection of light or heavy users within a broad range. We find only a low PCC between 

users in groups II and V, consequently we do not take the small group of extremely heavy users (group 

V) into account. Thus we employ data from the user groups II, III and IV in our simulation.  

 

Figure S7. The distribution 𝑃𝑃𝑖𝑖𝑖𝑖  of travel demands extracted from users in group II, III, IV and V. (A) 
In the Bay Area (BAY),  𝑃𝑃𝑖𝑖𝑖𝑖  is extracted from group II, III, IV and V users respectively. The 𝑃𝑃𝑖𝑖𝑖𝑖  
extracted from users in groups II, III and IV are highly correlated, whereas a lower correlation is found 
between the 𝑃𝑃𝑖𝑖𝑖𝑖  from group II and V users. To avoid the bias caused by these extremely active users, 
we employ users from group II, III and IV (91.5% of the selected 356,670 users) to extract the travel 
demand distribution. (B) Same as (A) but for the Boston Area (BOS) with 89.5% of the selected 683,001 
users. 
 

5.  Generating the vehicle based transient OD: 

One may note that the extracted distribution of travel demands did not take the population 

distribution into account. To avoid the bias caused by the unevenly distributed mobile phone user market 

share, we define the down-scale ratio (𝑀𝑀(𝑖𝑖) < 1) or the up-scale ratio (𝑀𝑀(𝑖𝑖) ≥ 1) as follows: 
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   𝑀𝑀(𝑖𝑖) = 𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝 (𝑖𝑖)/𝑁𝑁𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 (𝑖𝑖)          (S6) 

where 𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝 (𝑖𝑖) and 𝑁𝑁𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 (𝑖𝑖) are the population and the number of selected mobile phone users in zone 

i. The measured 𝑀𝑀(𝑖𝑖) distributions are shown in Fig. S8. For both areas, they are relatively broad, thus 

it is necessary to adjust the number of trips 𝐹𝐹𝑖𝑖𝑖𝑖  by up-scaling or down-scaling the mobile phone users 

(Eq. S7).  

 

Figure S8. The blue curve corresponds to the distribution of up-scaling/down-scaling ratios 𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝 /𝑁𝑁𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢  
in the Bay Area (BAY) zones. The red curve corresponds to that in the Boston Area (BOS) zones. Note 
that in some regions the actual number of mobile phone users staying there may be larger than the 
number of residents registered by census. 
 

After this process, the total number of trips generated by residents in a zone is proportional with its 

actual population: 

        𝐹𝐹𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖𝑖𝑖 = ∑ 𝑇𝑇𝑖𝑖𝑖𝑖 (𝑛𝑛) × 𝑀𝑀(𝑘𝑘)𝑁𝑁𝑘𝑘
𝑛𝑛=1         (S7) 

where 𝑁𝑁𝑘𝑘  is the total number of users in the 𝑘𝑘𝑡𝑡ℎ  zone and 𝑇𝑇𝑖𝑖𝑖𝑖 (𝑛𝑛) is the total number of trips that user 

𝑛𝑛 made between zone i and zone j during the three weeks of study.  
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Figure S9. Vehicle usage rates by geographical area. Different colours represent different vehicle usage 
rates (𝑉𝑉𝑉𝑉𝑅𝑅). Urban areas have lower 𝑉𝑉𝑉𝑉𝑅𝑅 than suburban areas, as can be noticed for San Francisco, a 
part of the east Bay and Santa Cruz, as well as for Boston. 
 

People use different transportation modes throughout their trips. Possible transportation modes 

include car (drive alone), carpool, public transportation, bicycle and walk. We define a user is a vehicle 

user if he/she uses car to commute. We calculate the vehicle using rate (𝑉𝑉𝑉𝑉𝑅𝑅) in a zone as follows:  

                  𝑉𝑉𝑉𝑉𝑅𝑅(𝑖𝑖) = 𝑃𝑃𝑐𝑐𝑎𝑎𝑢𝑢  𝑑𝑑𝑢𝑢𝑖𝑖𝑑𝑑𝑢𝑢  𝑎𝑎𝑎𝑎𝑝𝑝𝑛𝑛𝑢𝑢 (𝑖𝑖) + 𝑃𝑃𝑐𝑐𝑎𝑎𝑢𝑢𝑝𝑝𝑝𝑝𝑝𝑝𝑎𝑎 (𝑖𝑖)/𝑆𝑆      (S8) 

where 𝑃𝑃𝑐𝑐𝑎𝑎𝑢𝑢  𝑑𝑑𝑢𝑢𝑖𝑖𝑑𝑑𝑢𝑢𝑢𝑢  𝑎𝑎𝑎𝑎𝑝𝑝𝑛𝑛𝑢𝑢 (𝑖𝑖) and 𝑃𝑃𝑐𝑐𝑎𝑎𝑢𝑢  𝑝𝑝𝑝𝑝𝑝𝑝𝑎𝑎 (𝑖𝑖) are the probabilities that residents in zone i drive alone or 

share a car. The average carpool size 𝑆𝑆 is 2.25 in California and 2.16 in Massachusetts (13). As shown 

in Fig. S9, 𝑉𝑉𝑉𝑉𝑅𝑅 is low in downtown and high in the suburb areas. Using the 𝑉𝑉𝑉𝑉𝑅𝑅 calculated for each 

zone, we randomly assign the transportation mode (vehicle or non-vehicle) to the users living in each 

zone. We then filter the trips that are not made by vehicles and calculate the total number of trips 

generated by vehicles 𝐹𝐹𝑑𝑑𝑢𝑢ℎ𝑖𝑖𝑐𝑐𝑎𝑎𝑢𝑢 𝑖𝑖𝑖𝑖 :   

     𝐹𝐹𝑑𝑑𝑢𝑢ℎ𝑖𝑖𝑐𝑐𝑎𝑎𝑢𝑢 𝑖𝑖𝑖𝑖 = ∑ 𝑇𝑇𝑖𝑖𝑖𝑖 (𝑛𝑛) × 𝑀𝑀(𝑘𝑘)𝑁𝑁𝑘𝑘
𝑛𝑛=1            (S9) 

where user n is a vehicle user, 𝑁𝑁𝑘𝑘  is the number of users in zone 𝑘𝑘. 
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Figure S10. Distribution of daily traffic. (A) In each hour, the traffic contributed by vehicles represents 
a specific fraction of daily total traffic. (B) The average hourly total trip productions in the four time 
periods. For each time period, the hourly total trip productions are assigned as the average.   
 

The average number of daily trips per person is about 4 in the US (14). This generates about 22 

million trips in the Bay Area and 14 million trips in the Boston Area. Based on the daily distribution of 

traffic volume obtained from (15), we estimate the average hourly trip production 𝑊𝑊 in the four time 

periods (Fig. S10B). Next, we upscale the obtained distribution of travel demands with the hourly trip 

production 𝑊𝑊 for the entire population, thus finally defining the estimated t-OD.  

        t-OD𝑖𝑖𝑖𝑖 = 𝑊𝑊 × 𝐹𝐹𝑑𝑑𝑢𝑢ℎ𝑖𝑖𝑐𝑐𝑎𝑎𝑢𝑢 𝑖𝑖𝑖𝑖
∑ 𝐹𝐹𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖𝑖𝑖𝐴𝐴
𝑖𝑖𝑖𝑖

             (S10)  

where 𝐴𝐴 is the number of zones. The following flow chart summarizes the methodology to calculate 

t-OD (Fig. S11). 
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Figure S11. Flow chart for the calculation of t-OD. 
 

6.  Converting zone based t-OD to intersection based t-OD: 

To assign trips to the road networks, we map each t-OD pair from zone based t-OD to 

intersection-based t-OD. We find the road intersections within a zone and randomly select one 

intersection to be the origin or destination in the intersection-based t-OD (Fig. S5). In very few cases no 

intersection is found in a zone. In such cases we assign a trip’s origin or destination to a randomly 

chosen intersection in the nearest neighbouring zone. We generate four 11,096 × 11,096 intersection 

based t-OD from the four 892 × 892 zone based t-OD in the Bay Area (the Bay Area road network 

contains 11,096 intersections). For the Boston Area, we generate four 9,643 × 9,643 intersection based 

t-OD from the four 750 × 750 zone based t-OD (the Boston road network contains 9,643 intersections). 
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B. 

With the intersection based t-ODs calculated, we next assign the trips to the two road networks. The 

most fundamental method is provided by the classic Dijkstra algorithm, commonly used for routing in 

transportation networks (16). Dijkstra’s algorithm is a 

Incremental Traffic Assignment 

graph search algorithm that solves the shortest 

path problem for a graph with nonnegative edge path costs (travel time in our case). With the Dijkstra 

algorithm, we can find the shortest path with minimum travel time between the origin and destination in 

a road network. However, the Dijkstra algorithm ignores the dynamical change of travel time in a road 

segment. Thus to incorporate the change of travel time, we apply the incremental traffic assignment 

(ITA) method (17) to assign the t-OD pairs to the road networks. In the ITA method, the original t-OD is 

first split into four sub t-ODs, which contain 40%, 30%, 20% and 10% of the original t-OD pairs 

respectively. These fractions are the commonly used values (18). The trips in the first sub t-OD are 

assigned using the free travel time 𝑡𝑡𝑓𝑓  along the routes computed by Dijkstra’s algorithm. After the first 

assignment, the actual travel time 𝑡𝑡𝑎𝑎  in a road segment is assumed to follow the Bureau of Public 

Roads (BPR) function that widely used in civil engineering 𝑡𝑡𝑎𝑎 =  𝑡𝑡𝑓𝑓(1 + α(𝑉𝑉𝑉𝑉𝑉𝑉)β), where commonly 

used values α = 0.15 and β = 4 are selected (18). Next, the trips in the second sub t-OD are assigned 

using the updated travel time 𝑡𝑡𝑎𝑎  along the routes computed by Dijkstra’s algorithm. Iteratively, we 

assign all of the trips in the four sub t-ODs. In the process of finding the path to minimize the travel 

time, we record the route for each pair of transient origin and transient destination. 

The advantages of the ITA method consist of two aspects. First, it takes the dynamical change of 

travel time into account, mimicking the process of drivers selecting routes according to their knowledge 

of the traffic in a road network. Indeed, traffic flows predicted by the ITA method are a very good 

approximation of those predicted by the widely used User Equilibrium traffic assignment (UE) method 

(19). We find high correlations between the traffic flows predicted by the ITA method and the UE 

method in Fig. S12, which motivates the use of the ITA method for our work (it can be implemented 

easily without suffering from the computational complexity of UE solutions). Second, another advantage 

http://en.wikipedia.org/wiki/Graph_search_algorithm�
http://en.wikipedia.org/wiki/Shortest_path_problem�
http://en.wikipedia.org/wiki/Shortest_path_problem�
http://en.wikipedia.org/wiki/Graph_(mathematics)�
http://en.wikipedia.org/wiki/Edge_(graph_theory)�
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of the ITA method over the UE method is that by using the ITA method we can easily estimate the route 

of each OD pair, offering us the opportunity to study the road usage with respect to a road segment’s 

driver sources (discussed in the main article).      

 

Figure S12. Validation of the ITA method. The x-axis represents the traffic flows (vehicles/hour) 
predicted by the ITA method and the y-axis represents that calculated by the UE method (UE function in 
TransCAD). The consistency of the results shows that the ITA method is a good approximation of the 
UE method. (A) shows the Bay Area (BAY). (B) shows the Boston Area (BOS). 
 
 

C. 

In order to validate the results from the previous sections, an independent data set is needed in order 

to compare the corresponding estimates with these independent measurements. Probe vehicle data based 

on GPS receivers has enjoyed a widespread use in transportation. However it must be said that it will not 

be possible in the near future to use GPS probe data to calculate traffic volumes in whole urban road 

networks. This is because the amount of probe data is still too low to be used for inference of traffic 

volumes. Probe data has successfully been used to compute travel times and speeds along freeways and 

arterials (20). Thus, the validation process used to assess the accuracy of our method will rely on travel 

Estimation of Travel Time from GPS Probe Data 
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time and speed as a proxy, which we can infer from probe data provided by taxicabs and commercial 

vehicle companies. 

This data show unique advantages for tracking a fleet of vehicles and routing and navigation. The 

receivers are usually attached to a car or a truck (referred to as a probe vehicle), and they relay 

information to a base station using the data channels of the cell phone networks. A datum provided by 

probe vehicles includes an identifier of the vehicle, a GPS position and a timestamp. In order to reduce 

power consumption and transmission costs, the probe vehicles do not continuously report their location 

to the base station. Instead they relay their position either at fixed times (every second to every minute), 

or at some landmark positions (a concept patented by Nokia under the term Virtual Trip Time) (21). 

This data type is very popular, especially amongst transportation companies for tracking purposes, but 

presents unique challenges for estimating traffic flows patterns: 

(1) The precise location of the vehicle is known with some error, due to GPS observation noise. 

(2) The path of the vehicle between two consecutive observations can be significantly long, and is 

usually unobserved. 

The approach used in this work is to reconstruct the trajectories of the vehicles as accurately as 

possible, using machine learning techniques. From these trajectories, only sample points are observed, 

between which the travel time is known. This information (travel time, reconstructed trajectory) is then 

passed on to a second learning algorithm that learns travel times on every road link. This process is 

repeated for every day of the week and every 15 minutes of a day to calculate a weekly historical 

estimate of the traffic. We briefly describe the mapping algorithm below and then introduce the travel 

time learning algorithm (Fig. S13). 

 



Page 18 / 30 
 

 

Figure S13. Estimation of travel times using probe vehicle data. In the background, the density map of 
probe data around San Francisco is shown. The maximum density (in white) corresponds to 7.2 GPS 
observations per hour and per square meter. (A) focuses on the Embarcadero neighborhood. (B) shows 
the GPS observations (sent every minute) collected from three vehicles in that area between 8am and 
10am. The trajectory of each vehicle is reconstructed from the sequence of GPS points using the Path 
Inference algorithm. (C) presents a few trajectory segments between two consecutive GPS point. The 
EM algorithm then infers the travel times on each road link, by learning from these time-stamped 
segments. (D) shows a typical output of the travel time algorithm, at 8am on a Monday Morning. 
 

Map Matching Algorithm 

The GPS error is assumed to follow a (nearly Gaussian) dispersion model. Meanwhile, the driver's 

behaviour on the road is assumed to follow a model that indicates the preferences of the driver between 

one path and another. Our framework can be decomposed into the following steps: 

Map matching: each GPS measurement from the input is projected onto a set of candidate states on 

the road network. The vehicle is assumed to have been in either of these candidate states when the GPS 

observation was made. 
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Path discovery: a number of potential paths are computed between pairs of candidate states on the 

road network. The vehicle is assumed to have followed one of these paths when it travelled from the 

previous observation to the next 

Filtering: probabilities are assigned to the paths and the states using a model of the driver’s 

preferences and of the GPS dispersion. These probabilities are computed using a dynamic programming 

approach, using a probabilistic structure called a Conditional Random Field. Using the Viterbi 

algorithm, the most likely trajectory is obtained. At the output of the filter, we obtain reconstructed 

trajectories, along with time stamped waypoints. This dataset is then used to computing historical travel 

time estimates. 

Expectation Maximization Algorithm 

Each segment of the trajectory between two GPS points is referred to as an observation. An 

observation consists of a start time, an end time and a path on the road network. This path may span 

multiple road links, and starts and ends at some offset within some links. The observations are grouped 

into 15 minute time intervals and sent to a traffic estimation engine, which runs the learning algorithm 

described next and returns probability distributions of travel times for each link. The goal of the traffic 

estimation algorithm is to infer how congested the links are in a road network, given periodic GPS 

readings from vehicles moving through the network. An additional difficulty in estimating the travel 

time distributions is the lack of travel times for the individual links. Instead, each observation only 

specifies the total travel time for an entire list of links travelled. To solve this problem, we use an 

iterative expectation maximization (EM) algorithm. The central idea of the algorithm is to randomly 

partition the total travel time among links for each observation, and then weigh the partitions by their 

likelihood according to the current estimate of travel time distributions. Next, given the weighted travel 

time samples produced for each link, we update the travel time distribution parameters for the link to 

maximize the likelihood of these weighted samples. By iteratively repeating this process, the algorithm 

converges to a set of travel time distribution parameters that fit the data well. The sample generation 
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stage is called the expectation (E) step, and the parameter update stage is called the maximization (M) 

step. This procedure rapidly and reliable converges to some estimated travel times for every road of the 

network. 

 

D. 

Due to the lack of reliable traffic flow data at a global scale (due to the insufficient volume of probe 

data), we compare for each road segment the predicted travel time with the average travel time 

calculated from the probe vehicle GPS data (the data is mostly obtained from Taxi fleets). According to 

the BPR function, the travel time of a road segment is decided by its traffic flow. A road segment’s 

travel time increases with the increase of its traffic flow. Hence, obtaining the travel time from GPS 

probe data can be an indirect way to validate our results on the distribution of traffic flow. For 68% of 

the road segments in the Bay Area road network (16,594), the probe vehicle GPS data record the 

average travel time in each 15 minute interval of the one week observational period. Using this data, we 

calculate the average travel time for each road segment in the four time periods considered for this work 

(Morning, Noon & Afternoon, Evening and Night). We find that the predicted travel time from the t-OD 

has a good linear relation 𝑇𝑇prediction = 𝑘𝑘𝑇𝑇probe  vehicle  with the average travel time estimated from the 

probe vehicle GPS data (the coefficient of determination R2>0.9 for all time periods). The Pearson 

correlation coefficients (PCC) are larger than 0.95 for all time periods (Fig. S14). The slope 𝑘𝑘 is about 

0.75 in the daytime, which may be caused by the relatively frequent waiting or speed deceleration when 

drivers wait at traffic lights (we did not consider traffic signals in the presented modelling framework). 

The slope is about 1 in the Night period, indicating the high vehicle speeds during this period. Taken 

together we find a high correspondence between our predicted result and the GPS probe data estimation, 

demonstrating the strength of the presented methodology. Furthermore, elements such as more accurate 

information about road capacity, free travel time and parameters for the BPR function and traffic signals 

can be integrated into our fundamental modelling framework to enrich future predictions. 

Validation 
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Figure S14. The predicted travel time is validated by the travel time estimated from the probe vehicle 
GPS data. Because traffic flow data is not available on arterial roads, the only available comparison 
variable to assess the validity of the method is travel time (which can be measured directly from probe 
data). To this day, this is the only feasible method to perform this comparison at a global scale and 
represents the latest state of the art.  
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III. RESULTS 

A. 

1. The road segment’s degree is lowly correlated with traditional measures: 

Supplementary Results 

As Fig. S15 shows, although relatively large Pearson correlation coefficient PCC=0.65 (BAY) and 

PCC=0.60 (BOS) are measured, road segments with similar traffic flow can still have large difference in 

their 𝐾𝐾road . We also find road segments with similar 𝑉𝑉𝑉𝑉𝑉𝑉 can have very different 𝐾𝐾road  (PCC=0.46 

and PCC=0.37 for the Bay Area and the Boston Area respectively). This result indicates that for road 

segments with similar condition of congestion, the diversity of their driver sources may be very 

different. The betweenness centrality bc of a road determines its ability to provide a path between 

separated regions of the network. We find bc also has low correlations with 𝐾𝐾road  (Fig. S15C and F).  

 
Figure S15. Road segment’s degree 𝐾𝐾road  has low correlations with its traffic flow 𝑉𝑉, 𝑉𝑉𝑉𝑉𝑉𝑉 and 
betweenness centrality 𝑏𝑏c . (A) Pearson correlation coefficient (PCC) between 𝑉𝑉 and 𝐾𝐾road  in the Bay 
Area. (B) PCC between 𝑉𝑉𝑉𝑉𝑉𝑉 and 𝐾𝐾road  in the Bay Area. (C) PCC between 𝑏𝑏c  and 𝐾𝐾road  in the Bay 
Area. (D), (E), (F) Same as (A), (B), (C) respectively but for the Boston Area. 
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2. Grouping the road segments according to their bc and 𝑲𝑲𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫: 

Fig. S16 shows the betweenness centrality 𝑏𝑏c  and the degree 𝐾𝐾road  of road segments. Road 

segments are grouped and depicted in different colors.  

 

Figure S16. Types of roads defined by 𝑏𝑏c  and 𝐾𝐾road . The road segments are grouped by their 
betweenness centrality 𝑏𝑏c  and degree 𝐾𝐾road . The red symbols represent the roads with the largest 25% 
of 𝑏𝑏c  and 𝐾𝐾road . The green symbols represent those with the largest 25% of 𝑏𝑏c  and the smallest 75% 
of 𝐾𝐾road . The yellow symbols are those with the smallest 75% of 𝑏𝑏c  and the largest 25% 𝐾𝐾road . The 
road segments depicted in grey have the smallest 75% of 𝑏𝑏c  and 𝐾𝐾road . 
 

3. The total additional travel time 𝑻𝑻𝒆𝒆 in driver sources: 

Fig. S17 shows the total additional travel time 𝑇𝑇𝑢𝑢  of the driver sources. Due to the heterogeneity of 

road usage, 𝑇𝑇𝑢𝑢  is very unevenly distributed in space in the two metropolitan areas, enabling us to easily 

locate the driver sources with high 𝑇𝑇𝑢𝑢 . For the Bay Area, the top 1.5% driver sources (12 sources) with 

the largest 𝑇𝑇𝑢𝑢  are selected. In the case study for the Boston Area, we select 15 driver sources (top 2%) 

with highest 𝑇𝑇𝑢𝑢 . This selection makes sure that for a similar local trip reduction f, the global trip 

reduction m is same as that of the Bay Area.  
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Figure S17. (A) The total additional travel time 𝑇𝑇𝑢𝑢  for each Bay Area driver source. The red polygons 
locate the pinpointed driver sources with 𝑇𝑇𝑢𝑢 > 1,355 minutes. Thus the drivers suffering from heavy 
traffic congestion are located. (B) Same as (A) but for the Boston Area. The red polygons locate the 
targeted 15 driver sources (top 2%) with a total of more than 400 minutes additional travel time in one 
hour of the morning commute.  

To address the underlying reasons for the high efficiency of the selective strategy (Fig. 4B), we 

measure the average traffic flow reduction 𝛿𝛿𝑉𝑉 for road segments with different levels of 𝑉𝑉𝑉𝑉𝑉𝑉. As Fig. 

S18 shows, the red, green and blue curves correspond to the road segments with 𝑉𝑉𝑉𝑉𝑉𝑉 > 1 (High 𝑉𝑉𝑉𝑉𝑉𝑉), 

0.5< 𝑉𝑉𝑉𝑉𝑉𝑉 ≤ 1 (Middle 𝑉𝑉𝑉𝑉𝑉𝑉) and 𝑉𝑉𝑉𝑉𝑉𝑉 ≤ 0.5 (Low 𝑉𝑉𝑉𝑉𝑉𝑉) respectively. We find that for high 𝑉𝑉𝑉𝑉𝑉𝑉 

road segments, 𝛿𝛿𝑉𝑉 is much larger in a selective strategy for both Bay Area and Boston Area, indicating 

that the selective strategy can more efficiently decrease the traffic flows in the congested road segments.  

 

Figure S18. (A) The average traffic flow reduction < 𝛿𝛿𝑉𝑉 > over road segments with different 𝑉𝑉𝑉𝑉𝑉𝑉 in 
the Bay Area. Red, green and blue symbols correspond to road segments with 𝑉𝑉𝑉𝑉𝑉𝑉 > 1, 0.5 < 𝑉𝑉𝑉𝑉𝑉𝑉 ≤
1 and 𝑉𝑉𝑉𝑉𝑉𝑉 ≤ 0.5 respectively. (B) Same as (A) but for the Boston Area.  
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4. The results for other time periods: 

Fig. S19 are counterpart figures for Fig. 1 and Fig. 2. It shows the corresponding results in the other 

three periods (Noon & Afternoon, Evening and Night). We find that the results for the three daytime 

periods show high similarities, whereas the results in the Night period are different due to minor road 

usage. These results indicate that using our modelling framework, we can capture the road usage pattern 

dynamically. 

 

Figure S19. Green circles represent the results in Morning period, red squares represent the results in 
Noon & Afternoon period, blue triangulations represent the results in Evening period and black 
diamonds represent the results in Night period. (A) Distribution of the Bay Area one-hour traffic flow in 
the four time periods. The one-hour traffic flow in the Night period is much smaller than that found in 
the daytime periods. (B) Distribution of the Bay Area 𝑉𝑉𝑉𝑉𝑉𝑉 in the four time periods. (C) Degree 
distributions of the Bay Area driver sources in the four time periods. (D) Degree distributions of the Bay 
Area road segments in the four time periods. (E), (F), (G), (H) are same as (A), (B), (C), (D) 
respectively but for the Boston Area. 
 



Page 26 / 30 
 

5. The distance from road segment to its MDS: 

 We measure the distance d from each road segment to its major driver sources. We find that d can 

be well approximated by a log-normal distribution 𝑃𝑃(𝑑𝑑)~ e−(ln (𝑑𝑑)−μ)2/2σ2 /(√2πσ𝑑𝑑). As Fig. S20 

shows, the distance d centers around 4km and 7km for Bay Area and Boston Area respectively, 

indicating that the MDS are geographically nearby the corresponding road segment. However, there 

exist MDS that are far away from the road segment (>50km). The prediction of these specific MDS is 

beyond a traditional distance decaying function, and this is the power of our modeling framework in 

capturing the urban travel demand.  

 

Figure S20. The distribution of the distance d from each road segment to its MDS. The blue circles 
represent the result for Bay Area and the red triangles represent the result for Boston Area. The distance 
d from each road segment to its MDS can be well approximated by a log-normal distribution 
𝑃𝑃(𝑑𝑑)~ e−(ln (𝑑𝑑)−μ)2/2σ2 /(√2πσ𝑑𝑑)  with μ = 2.40 (2.76) , σ = 0.99 (0.81) , R2=0.98 (0.96) for Bay 
Area (Boston Area). 
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B. 

The purpose of this section is to support our findings with rigorous goodness-of-fit analysis. We 

evaluate goodness-of-fit statistics for parametric models in the paper by calculating the sum of squares 

due to error (SSE), the R2 and the root mean squared error (RMSE). 

Statistical Analysis 

Area 𝑝𝑝𝐴𝐴  𝑝𝑝𝐻𝐻  𝛽𝛽𝐻𝐻 𝑐𝑐𝐴𝐴 𝛼𝛼𝐴𝐴 R2 SSE RMSE 

BAY 0.876  0.124 0.00026 4.625e-008 2.43 0.991 5.38e+006 227.4 
BOS 0.942  0.058 0.00046 2.581e-005 1.86 0.996 2.76e+006 135.8 

Table S2. The distribution of betweenness centrality: 𝑃𝑃(𝑏𝑏c) = 𝑝𝑝𝐻𝐻𝛽𝛽𝐻𝐻𝑢𝑢−𝑏𝑏c /𝛽𝛽𝐻𝐻 + 𝑝𝑝𝐴𝐴𝑐𝑐𝐴𝐴𝑏𝑏c
−𝛼𝛼𝐴𝐴 . 𝑝𝑝𝐴𝐴 is the 

fraction of arterial roads, 𝑝𝑝𝐻𝐻 is the fraction of highways, 𝛽𝛽𝐻𝐻 is the average highway betweenness 
centrality, 𝑐𝑐𝐴𝐴 and 𝛼𝛼𝐴𝐴 are estimated by the Matlab fitting toolbox. 
 
 

Area 𝑝𝑝𝐴𝐴  𝑝𝑝𝐻𝐻  𝜐𝜐𝐴𝐴 𝜐𝜐𝐻𝐻 R2 SSE RMSE 

BAY 0.876  0.124 373 1493 0.999 4.126e-009 1.193e-005 
BOS 0.942  0.058 236 689 0.997 2.508e-008 3.959e-005 

Table S3. The distribution of one-hour traffic flow: 𝑃𝑃(𝑉𝑉) = 𝑝𝑝𝐴𝐴𝜐𝜐𝐴𝐴𝑢𝑢−𝑉𝑉/𝜐𝜐𝐴𝐴 + 𝑝𝑝𝐻𝐻𝜐𝜐𝐻𝐻𝑢𝑢−𝑉𝑉/𝜐𝜐𝐻𝐻 . 𝑝𝑝𝐴𝐴 is the 
fraction of arterial roads, 𝑝𝑝𝐻𝐻 is the fraction of highways, 𝜐𝜐𝐴𝐴 is average traffic flow for arterial roads, 
𝜐𝜐𝐻𝐻 is the average traffic flow for highways. 
 
 

Area 𝛾𝛾 R2 SSE RMSE 

BAY 0.28  0.983 0.2199 0.08861 
BOS 0.28 0.982 0.1769 0.08769 

Table S4. The distribution followed by 𝑉𝑉𝑉𝑉𝑉𝑉: 𝑃𝑃(𝑉𝑉𝑉𝑉𝑉𝑉) = 𝛾𝛾𝑢𝑢−𝑉𝑉𝑉𝑉𝑉𝑉/𝛾𝛾 , 𝛾𝛾 is the mean of 𝑉𝑉𝑉𝑉𝑉𝑉. 
 
 

Area 𝜏𝜏 R2 SSE RMSE 

BAY 204.2  0.972 2.362e-006 0.000198 
BOS 113.2  0.735 6.038e-005 0.001374 

Table S5. The distribution followed by total additional travel time: 𝑃𝑃(𝑇𝑇𝑢𝑢) = 𝜏𝜏𝑢𝑢−𝑇𝑇𝑢𝑢/𝜏𝜏 , 𝜏𝜏 is the mean of 
𝑇𝑇𝑢𝑢 .  
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Area μsource  σsource  R2 SSE RMSE 

BAY 1035.9 792.2 0.785 2.847e-007 8.893e-005 
BOS 1017.7 512.3 0.914 1.540e-007 7.849e-005 

Table S6. The statistical fits of driver source’s degree: 𝑃𝑃(𝐾𝐾source ) = e−(𝐾𝐾source −μsource )2/2σsource
2 /

(√2πσsource ), where μsource  is the mean of 𝐾𝐾source  and σsource
2 is the variance.  

 
 

Area μroad  σroad  R2 SSE RMSE 

BAY 3.713 0.821 0.978 9.013e-006 0.0008326 
BOS 3.359 0.724 0.989 1.271e-005 0.0006737 

Table S7. The statistical fits of road segment’s degree: 
𝑃𝑃(𝐾𝐾road ) = e−(ln (𝐾𝐾road )−μroad )2/2σroad

2 /(√2πσroad 𝐾𝐾road ) 
 
 

Strategy 𝑘𝑘 𝑏𝑏 (𝑏𝑏~0) R2 SSE RMSE 

BAY (Random) 6.931e+005    -0.0020 0.9019 4.349e+006 737.3 
BAY (Selective) 2.261e+006  -0.0010  0.9820 7.753e+006 984.4 
BOS (Random) 2.300e+005  0.0015 0.9818 8.299e+004 101.9 
BOS (Selective) 1.181e+006 -0.0001 0.9966 4.023e+005 224.3 

Table S8. The total additional travel time reduction 𝛿𝛿𝑇𝑇 with the trip reduction percentage m in the 
cases of selective and random strategies: 𝛿𝛿𝑇𝑇 = 𝑘𝑘(𝑚𝑚− 𝑏𝑏).   
 
 

Periods k R2 SSE RMSE 

Morning 0.7277  0.9093 1701 0.3204 
Noon & Afternoon 0.7416  0.9200 1496 0.3005 

Evening 0.7567  0.9178 1541 0.3049 
Night 0.9951  0.9724 516.3 0.1765 

Table S9. The validation of predicted travel time by the estimated travel time from probe vehicles’ GPS 
data: 𝑇𝑇prediction = 𝑘𝑘𝑇𝑇probe  vehicle .  
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