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Sub-lineages coefficient of variation (SLCV) and individual cells coefficient of 

variation (IDCV)  

Consider micro-colony originated from one single cell. At time s, the micro-colony 

reaches Ns cells. At later time point t>s, each cell in time s had produced ni progenies 

respectively, whose fluorescence intensity or growth rate are denoted as xi
k 
(i=1~Ns; 

k=1~ni). Therefore, the total number of cells at time t is  
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The averaged fluorescence intensity among cells within the same sub-lineage is  
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We define the average of ix  as s  
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The SLCV for starting point s and end point t is then calculated as  
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Let IDCV be the coefficient of variation among all individual cells in the micro-colony.  
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To derive the relation between SLCV and IDCV, we consider a simplified condition 

when ni=n is a constant. (In case ni is not a constant but with small variation, the same 

principle still holds.) Therefore  
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On the other hand, 
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Compare the expression of SLCV and IDCV, the difference is in the term 
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If there is no differenciation occurs among the sub-lineages, for each sub-lineage, we 

have 
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In such case, the term (*) will be close to zero. Therefore  
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Otherwise, if differenciation occurs so that ix  deviate from  , (*) will be larger than 

zero. Then 
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Autocorrelation function for cell lineage (AFCEL) 

Consider micro-colony originated from one single cell. At time s, the micro-colony 

reaches Ns cells whose fluorescence intensity are denoted as xi (i=1~Ns). At later time 

point t>s, each cell in time s had produced ni progenies respectively, whose 

fluorescence intensity is denoted as xi
k 
(i=1~Ns; k=1~ni). 

AFCEL is defined as 

 





 






s

s i

N

i

si

s

N

i

n

k

t

k

isi

t

xx
N

xxxx
N

st

1

2

1 1

1

))((
1

),(AFCEL
 

Where 
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Autocorrelation function at non-steady state 



We examine how the autocorrelation function will be in the simplest linear model, 

without feedback controls. Let x be the concentration of protein expression level in the 

cell. The normalized autocorrelation function between time t and t-τ (t>τ) is defined as 
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Consider x is controlled by a constant production rate β and constant dilution rate α 

due to cellular growth. The dynamics of x can be described as 

)(tx
dt

dx
                 (1) 

Where η(t) is the intrinsic noise satisfying  
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When the system reaches equilibrium, for any τ and t, there will be 
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In this case the autocorrelation function does not depend on t and decades 

exponentially with τ. The half life of decay is ln2/α, which equals to the cellular 

doubling time.  

If the system is not in equilibrium state, for example at the beginning of stress 

induction, applying the similar deduction procedure as in (1), ),( tR  is calculated as 

follows. 

Consider the system had reached equilibrium before time t=0. At time =0, the 

production rate increased from β to β1 (β < β1). The intrinsic noise η also change to η1. 

Therefore, if there is not feedback mechanism, the induction process (t>0) is 

described as   
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dt

dx
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Let the equilibrium state of equation (1) be the initial condition of equation (2) 
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Where 0  is random noise.  
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Solve equation (2)  
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According to (3), 
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Because  
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Therefore,  
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As shown in Figure S19, only when 10    the autocorrelation half-life is longer 

than the doubling time /)2ln( . This condition is in contrast to the increased 

variation after induction we observed (Figure 2). Furthermore, in Figure S19, as t 

increases, the autocorrelation half-life converges to the cellular doubling time, while in 

reality the autocorrelation half-life can be much longer than doubling time after 

induction (Figure 4). Therefore, we concluded that the simple linear model described 

by equations (1) and (2) is not able to explain the prolonged autocorrelation half-life. 

There should be nonlinear mechanisms like positive feedback that govern the 

induction process.  

 

Stochastic Differential Equations Model 

A stochastic differential equation model was built to describe stress-induced reporter 

gene expression and cell division. We take into account the positive feedback 

between stress level and reporter gene expression level. The reporter gene 



expression is also inversely correlated with the cellular growth rate. The model is 

based on equation (1) while the feedback mechanisms are added on to β  and α   
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Where x(i) is the reporter gene expression at time i and l(i) is the cell length at time i . 

η  and   are Gaussian noise. In non-stressed condition, β  and α  are constants. 

In stressed condition, the promoter activityβ  positively correlate with expression 

level )(ix  while the cellular growth rateα negatively correlate with it.  
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The initial cell length l  is normalized as 1. When the cell length increases to 2, one 

cell divides into two. The two daughter cells’ initial cell lengths are set to be 1 again 

and they inherit the mother’sβ  and α  value. Model parameters were set to fit the 

mean and variance of single cell phenotypes measured from the experimental data.  

As shown in Figure S7, in agreement with our experimental observations, the 

simulation results demonstrate that IDCV and SLCV are at the same level in normal, 

non-stressed condition, while the extended cell memory effect has led to significantly 

increased SLCV in the stress response regime. 
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