Supplemental Figure S1. Microarray analysis of *Clic4* expression and response to ethanol in PFC of C57BL6/J and DBA/2J mice. Robust multichip analysis (RMA) expression values for *Clic4* probeset ID 94254_at are presented from data published in Kerns et al. (Kerns *et al.*, 2005).

Supplemental Figure S2. Representative time-course of negative geotaxis in the continuous presence of vapor in flies. eRING assays were performed in Control w^{1118} (\circ), $Clic^{G0472}/+$ (\bullet) and $Clic^{EY04209}/+$ (\blacksquare) flies. Data from flies exposed to water vapor are shown at 0 (zero) minutes of ethanol exposure. Data from flies exposed to ethanol are shown at 1-11 minutes of ethanol exposure.

Supplemental Figure S3. Ethanol sensitivity in additional studies with *Drosophila Clic* **transposon mutants.** Ethanol sensitivity (T50 values) from eRING studies in hemizygous males (A, B) and homozygous females (C, D) were reared at 20°C to bypass the lethality associated with strong loss of function in *Clic* and then tested at 25°C using standard conditions. In all panels the *Clic* mutants have higher T50 values than Control *w*¹¹¹⁸ flies.

Supplemental Figure S4. Rapid tolerance to ethanol is not affected in *Drosophila Clic* **mutants.** Rapid ethanol tolerance (calculated as $[(T50_{EE}/T50_{E}-1) \times 100\%]$ where $T50_{E}$ and $T50_{EE}$ are determined, respectively, during a first and second exposure to ethanol separated by 4 hours of recovery without ethanol) in *Clic*^{G0472}/+ (A) and *Clic*^{EY04209}/+ (B) was not significantly altered compared to Control w^{1118} flies.

Supplemental Figure S5. Locomotor (climbing) behavior in the absence of ethanol in *Drosophila Clic* mutants. (A, C) Climbing speed was not significantly altered in $Clic^{G04722}$ /+ (A) or $Clic^{EY04209}$ /+ (C) compared to Control w^{1118} flies. (B, D) Climbing latency (time to initiate

31

climbing) was significantly shorter in $Clic^{G04722}$ /+ mutants compared to Control w^{1118} flies, but was not significantly altered in $Clic^{EY04209}$ /+ flies.

Supplemental Figure S6. Initial sensitivity to ethanol and locomotor behavior in the absence of ethanol *C. elegans* N2 controls and *Clic* mutants. (A) Data from Figure 5 replotted to show increased relative locomotor speed in *exc-4(rh133)* compared to N2 controls during the first 5 minutes of ethanol exposure. Other mutant genotypes are not shown for clarity. (B) Locomotor speed in the absence of ethanol in N2 control, *exc-4(rh133)*, *exl-1(ok857)* and *exc-4(rh133);exl-1(ok857)*. Data are from 4 independent experiments with 10 animals each per genotype.

Supplemental Figure S7. Expression of Clic4 correlates with expression of RNA

processing genes in mouse PFC. Microarray expression analysis of PFC from saline-treated BXD mouse strains (Wolen and Miles, unpublished) was used to identify genes having highly significant (FDR < 0.1%) Pearson correlations with *Clic4* expression. Ingenuity Pathway Analysis identified a highly significant over-representation of genes functioning in RNA processing. The network diagram displays the gene-gene interactions for this group of genes as determined by literature association analysis within IPA. Red and green coloration of gene symbol hubs reflect, respectively, positive or negative correlations with *Clic4* expression.

Supplemental Tables

Supplemental Table 1. Gene probesets having significant correlations with *Clic4* expression in PFC of saline treated BXD strains. Data analysis is described in Methods. This gene list was used for functional over-representation within Ingenuity Pathway Analysis (Figure S7).

Supplemental Table 2. ToppGene over-representation analysis of genes with correlated basal expression with Clic4 across the BXD panel of mice in PFC. Genes were selected and analyzed for functional group over-representation as described in Methods.

Bhandari Figure S3

