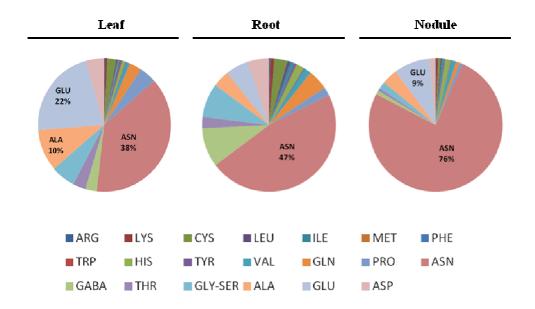

Journal of Experimental Botany

Are transpiration and N-feedback involved in the inhibition of nitrogen fixation in drought-stressed *Medicago truncatula*?


Erena Gil-Quintana, Estibaliz Larrainzar, Cesar Arrese-Igor and Esther M. González

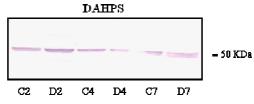

Fig. S1 Plant biomass after 7 days of partial drought treatment in shoot (A), root (B) and nodules (C). Values represent mean \pm SE (n=6). An asterisk hash (#) denotes significant differences (P \leq 0.05) between PDD and C. Root and nodule weight values in C and D correspond to halve of the SRS as it is for PD treatment. Plant biomass values at the beginning of the experiment were: shoot (2.12 g \pm 0.2), root (1.68 g \pm 0.18) and nodule (33.6 mg \pm 6.0).

Fig. S2 Effect of 7 days of partial drought on carbon isotopic composition in leaves (A) and roots (B). Treatments are as in Fig. 1b. Values represent mean \pm SE (n=3). An asterisk (*) denotes significant differences (P \leq 0.05) between D and C treatments.

Fig. S3 Distribution of Aa content in leaves, roots and nodules of control plants. Values represent the abundance in percentage of each Aa.

Fig. S4 Immunodetection of the levels of DAHPS in control and drought nodules of *M*. *truncatula* after 4 days of drought treatment.