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1. Molecular Dynamics. 1.1. Simulation setup. Classical molecular dy-
namics (MD) are used to describe the chemically specific ion–
solvent interactions of the ions enhanced at the interface: Na+ on
the water side and tetrakis(pentafluorophenyl)borate (TPFB−) on
the 1,2-dichloroethane (DCE) side. We use the simple point
charge (SPC) force field to model the water (1) and a fully flexible
DCE force field derived in the work by Benjamin (2) from ab initio
calculations and fitting to the empirical data. The combination of
the SPC force field and the Benjamin DCE force field leads to
a simulated neat water/DCE interface that is in agreement with the
experimental interfacial tension (2). In the simulation of Na+, the
water/DCE system was modeled by a rectangular box in the xy
plane, with dimensions 50 × 50 Å; the oil phase extends from z ¼ 0
to z ≈ 40 Å, whereas the aqueous phase reaches z ≈− 26 Å, with
a total of 2,424 water molecules and 844 DCE molecules. The
intermolecular interactions are smoothly cut off at distances larger
than one-half of the length of the simulation box. The truncation of
the long-range behavior of the Coulomb potential is treated using
the reaction field correction (3). The simulations were done ex-
clusively in the microcanonical ensemble (constant N;V ;E) using
a velocity Verlet algorithm to integrate the equations of motion
(3) using an integration time step of 1 fs in a custom computer
code written by I.B. The simulation boxes are equilibrated to at-
tain a fixed temperature (296 K) using Nosé constant temperature
dynamics and velocity rescaling.
1.2. Force fields.The interactions used in the simulation to define the
ionic contribution to the system’s potential energy are comprised
of 6–12 Lennard–Jones parameters, Coulomb interactions, and
intramolecular interactions in the case of TPFB–. Lennard–Jones
interactions between two atoms i; j in the system were computed
using Lorentz–Berthelot mixing rules: σij ¼ ðσi þ σjÞ=2 and
eij ¼ ffiffiffiffiffiffiffi

eiej
p . Force field parameters of TPFB– consist of defining

the Lennard–Jones parameters ðe; σÞ for each constituent atom
(C, F, and B), partial charges for Coulomb interactions (Table S2),
and intramolecular interactions. We consider a fully flexible
TPFB– with bonded interactions characterized by bond stretching
and bending treated in the quadratic potential approximation as
well as torsion (2). From the crystal structure of TPFB– (4),
equilibrium bond lengths r eq and equilibrium bond angles θ eq

entering the force field are determined by averaging over the
crystal structure values (reqBC; r

eq
CF; r

eq
CC; θ

eq
CBC; θ

eq
BCC; and θeqCCF listed

in Table S3). The harmonic force constants that define bond
stretching and bending, involving combinations of C and F atoms
(kCF; kCC; kCCF; and kCCC in Table S3), are readily available from
the general Amber force field (5), which was used in the simu-
lations. The bond stretching constant of the C–B bond (kBC) was
determined from a vibrational analysis using Gaussian03 (6), and
the quantum model was second-order Møller–Plesset perturba-
tion theory in the aug-cc-pVDZ basis. Because boron enters into
all bonded interactions that define the geometry of TPFB– in the
simulation, its corresponding parameters (kCBC and kCBC) were
set to preserve the equilibrium tetrahedral structure. Conse-
quently, the bending constant of the C–B–C angle was tentatively
set to be approximately equal to the constant of its counterpart
for the C–C–C, with the equilibrium angle, dCBC, set to be the
angle of a tetrahedral given that the crystal structure average
(dCBC ¼ 107:558) is very close to that geometry. The torsion
potentials, VF−C−C−C and VC−C−B−C, are chosen to keep the
fluorine atoms in the plane of the flurophenyl rings and maintain
the tetrahedral equilibrium configuration, respectively. In Table
S3, we summarize the parameters that enter the intramolecular

potentials in the quadratic potential approximation to model
bonded interactions of TPFB–.
The intramolecular potentials of TPFB– have a relatively small

contribution to the overall ion interaction energy compared with
the Coulomb and Lennard–Jones interactions. Hence, accurate
parametrization of the latter is necessary, especially for the C
and F atoms. The Lennard–Jones parameters for aromatic car-
bon and fluorine were taken from the Amber force field (7),
whereas the Lennard–Jones parameters of boron are taken from
the literature (8), which is shown in Table S2. Several Lennard–
Jones parameters for C and F were tested, with the ones from
the Amber force field producing the best agreement with the
experimental free energy of transfer; varying ðeB; σBÞ did not
affect the results of the simulation.
The atomic partial charges of TPFB– (Table S2) were de-

termined from quantum computations using second-order
Møller–Plesset perturbation theory in the aug-cc-pVDZ basis us-
ing the CHELPG algorithm implemented in the computational
chemistry package NWCHEM (9). The CHELPG algorithm
consists of assigning a charge qi to atom i in a molecule and then
using a monopole expansion to calculate the resultant electrostatic
potential. The values of the partial charges are fitted to minimize
the difference between the electrostatic potential and the molec-
ular potential determined from the ab initio computation.
1.3. Solvent interaction potential.We seek to simulate a potential that
encompasses an ion’s interaction with the solvents present in the
system as a function of the interfacial height z. This potential f sol
can then be used in Eq. 2 to describe the contribution of in-
termolecular interactions to the free energy of the electrical
double layer. To achieve this result, we use the potential of mean
force technique, which is summarized:

� An ion is inserted into an equilibrated simulation box of the
neat liquid/liquid interface at a specific z in the bulk liquids.

� The system is then equilibrated for a few hundred picoseconds.
� A simulation run lasting 2 ns ensues, with the ion’s position fixed.
� The force acting on the ion’s center mass is ensemble-aver-
aged at the end of the simulation, hFioniN;V ;E.� The procedure is repeated with the ion placed at a different z
position. The heights are chosen from one bulk liquid to the other.

� The ion–solvent interaction is found from the following
expression:

f solðzÞ ¼ −
Z

dz′
�
Fionðz− z′Þ�N;V ;E: [S1]

The above procedure was used for TPFB–, and the simulated
averaged force Fion is shown in Fig S1. Fig. 4 shows f solTPFB− .

2. Numerical Solution of the Poisson Equation. To calculate the ion
distributions at the liquid/liquid interface, Poisson’s equation with
the charge density provided by an electrical double-layer model
[Poisson–Boltzmann (PB), PB/MD, and Correlation (CORR)]
(Eq. 5) is applied to both liquid phases, with the interface lo-
cated at z ¼ 0. In all of the models considered in the text,
a numerical solution of ϕðzÞ across the interface is found to
satisfy the following boundary conditions:

� Bulk electroneutrality Ejz¼±∞¼ 0, where EðzÞ is the electric
field.

� Experimental potential drop across the interface:
ϕjz¼∞ −ϕjz¼−∞¼ Δϕ.
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� Electric field discontinuity at the interface: ewr Ejz¼0þ ¼
eDCE
r Ejz¼0− .

� Electrostatic potential continuity across the interface:
ϕjz¼0þ ¼ ϕjz¼0− .

The computational package Mathematica (Version 8; Wolfram
Research) was used to solve the second-order nonlinear differ-
ential equation. Specifically, the built-in functions NDSolve½ �
with the shooting method specified (10) and FindRoot½ � were
used to solve the boundary value problem defined above. Typical
numerical errors in the boundary conditions are less than 0.5%.
It is noteworthy that our numerical solution of the PB equation
compares very well with the exact analytic solution of the latter
when it exists, with differences no greater than 10−7 V (4).

3. Ion Correlations. 3.1. Theory. The ion distribution theory is out-
lined in the text. Here, we present the following equations that are
required for the numerical computation to determine the ion
density profile nðzÞ and the electric potential ϕðzÞ self-consistently

n−ðzÞ ¼
Z

n−ðz′Þw½jz− z′j; n−ðzÞ�dz′; ½S2�

(Eq. S3)

wðrÞ ¼ 3
2πs2

�
1
r
−
1
s

�
Θ ðs− rÞ; ½S3�

and (Eq. S4)

nðzÞ ¼ 3
2s3

Z
dz′nðz′Þðs− jz− z′jÞ2; [S4]

where s is the radius of the correlation hole defined by (11)

s ¼ 1
κ
ðω− 1Þ;

ω ¼
�
1þ 3ℓBκ

�1=3
¼
�
1þ ð3ΓÞ3=2

�1=3
;

[S5]

κ ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
4πnℓB

p
is the inverse Debye length, and n is the homoge-

neous density of the plasma. Eq. S2 is Eq. 7 in the text, but here,
we present Eq. S3 for the weight function w that was derived in
ref. 12. Eq. S4 is derived on substitution of Eq. S3 into Eq. S2,
with the additional consideration that the radial dependence of
Eq. S3must be projected onto the z axis (13). Eq. S4 is then used
in Eq. 8 in the text along with the following densities

nNaþðzÞ ¼ nbexp
h
− β
�
eϕðzÞ þ f solNaþðzÞ

�i
;

nCl−ðzÞ ¼ nbexp½βeϕðzÞ�;
nBTPPAþðzÞ ¼ nbexp½− βeϕðzÞ�;
nTPFB−ðzÞ ¼ nbexp

h
β
�
eϕðzÞ− f solTPFB− ðzÞ− μcorrðzÞ

�i
;

μcorrðzÞ ¼ δF corr

δnTPFB−ðzÞ

¼ fDHHðnTPFB−ðzÞÞ þ
Z

dznTPFB−ðzÞ δf
DHHðnTPFB−Þ
δnTPFB−

:

[S6]
3.2. Computation. Given that the excess chemical potential caused
by ion correlations in Eq. S6, μcorr , depends on nTPFB− in Eq. S2

to calculate the ion distributions, Poisson’s equation and Eqs. S4
and S6 are numerically solved to self-consistency and define what
we call the CORR model. The solution to Poisson’s equation,
the electrostatic potential ϕðzÞ, satisfies the same boundary
conditions discussed in SI Text, section 1.1. The algorithm used to
self-consistently solve for the density profiles for the NaCl/bis
(triphenylphosphoranylidene) ammonium (BTPPA) TPFB sys-
tem from the CORR model is described:

� Choose nguessTPFB− ðzÞ.
� Find sðnguessTPFB− ðzÞÞ from Eq. S5.
� Compute nTPFB− ðzÞ from Eq. S4 with nTPFB− ðzÞ→ nguessTPFB− ðzÞ.
� Find fDHHðnTPFB− ðzÞÞ.
� Compute μcorr from Eq. S6.
� Define Poisson’s equation with the ion densities given by Eq.
S6.

� Solve Poisson’s equation numerically.
� The numerical solution of Poisson’s equation, ϕðzÞ, is used to
find nTPFB− ðzÞ, again using Eq. S6.

� If maxfjnTPFB− ðzÞ− nguessTPFB− ðzÞjg< Tolerance, then the compu-
tation has converged.

� If maxfjnTPFB− ðzÞ− nguessTPFB− ðzÞjg>Tolerance, then nguessTPFB−

ðzÞ≡ nTPFB− ðzÞ, and the loop is repeated.

A few notes about the above algorithm are that (i) the compu-
tational procedure does not depend on the starting guess as long
as nguessTPFB− ð−∞Þ ¼ nb and (ii) the code scans a list of differences
between the guess and the solution at each z (after the maximum
value is found, it is compared with the convergence criterion or
the tolerance). We choose a tolerance of 10−6M, which produces
an approximate error of 0:1% in nb used in the computation and
less than 10−4% in the maximum value of nTPFB− .

4. Potential of Zero Charge and Interfacial Excess Charge. Measure-
ments of the potential-dependent interfacial tension, γðϕÞ, were
performed on the system using the Wilhelmy plate method (14),
where a Teflon plate is put in wetting contact with the interface.
The Teflon plate is attached to a Cahn microbalance, which
measures this force per length. The interfacial tension data are
shown in Fig. S1. The Lippmann equation allows us to determine
the surface excess charge from potential-dependent tension
measurements,

σ ¼ −
�

∂γ
∂Δϕw− o

cell

�
T;V ;μ

; [S7]

where T is the temperature, V is the volume, and μ is the chem-
ical potential.
The potential of zero charge Δϕpzc is determined by the po-

sition on the interfacial tension curve that corresponds to σ ¼ 0.
This potential is used to determine the potential difference
Δϕ ¼ ϕwater −ϕDCE across the liquid/liquid interface under in-
vestigation from the measured electrochemical cell potential and
the potential of zero charge (pzc), Δϕ ¼ Δϕ cell −Δϕpzc. Note
that the electrochemical cell potential is the potential difference
across a series of potential drops represented by the electro-
chemical cell diagram: Ag j AgCl j 10 mM NaCl (water) jj 5 mM
BTPPATPFB (DCE) j 10 mM LiCl + 1 mM BTPPACl (water) j
AgCl j Ag, where jj represents the interface under investigation;
the other j symbols represent other interfaces in the electro-
chemical cell. Electrical double layers exist at several of these
interfaces, but the standard electrochemical procedure just de-
scribed allows us to determine the potential difference Δϕ across
the interface under investigation.
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5. X-Ray Reflectivity Data Analysis.To calculate the electron density
ρðzÞ and R=RF from the ion density profiles niðzÞ, we use the
method described in ref. 15. The first step in this method is to
define an intrinsic electron density profile, where the solvents are
assumed to be homogeneously distributed

ρintsolventðzÞ ¼
	
ρw; z> 0
ρo; z< 0; [S8]

with the following electron densities for water, ρw ¼ 0:333 e–/�A3,
and DCE, ρo ¼ 0:38 e−/�A3. The electron density of the double
layer is accounted for by smearing the charge of an ion through-
out its volume using a Gaussian function; for this purpose, the
ions were modeled as spheres of diameter 1.95 Å for Na+, 3.66 Å
for Cl−, 11.0 Å for BTPPA+, and 10.0 Å for TPFB–, where the last
two were calculated from the crystal structure of BTPPATPFB. At
some potential Δϕ, a theoretical model (in the text) is used to
predict a density profile niðzÞ of each ion i present in the system.
The overall intrinsic electron density is given by

ρintðzÞ ¼ ρintsolventðzÞ þ
X
i

�
niðzÞNe

i − niðzÞViρ
int
solventðzÞ

�
; [S9]

where the sum is over the ion types, niðzÞ is the size-smeared
density profile of ion i, and Ne

i is the number of electrons of ion i.
Although the first term in the sum counts the contribution of the
ion densities to the electron density profile, the last term sub-
tracts the solvent electron density within the ionic volume Vi to
eliminate overcounting of the solvent’s electron density. The in-
trinsic electron density ρintðzÞ is not directly measurable by re-
flectivity. Because of interfacial thermal fluctuations, reflectivity
measures fluctuations superposed on the intrinsic electron den-
sity profile given in Eq. S9. Hence, the relevant electron density
profile averaged over the xy plane is given by

hρðzÞixy ¼


ρint ⋆N 
0; σcapðϕÞ��ðzÞ; [S10]

where ⋆ is the convolution operation, and N is the normal dis-
tribution that capillary wave theory assigns to interfacial fluctua-
tions. This theory describes density fluctuations as driven by
thermal fluctuations and opposed by surface tension and gravity,
and it provides a useful connection between the interfacial ten-
sion and rms value of height fluctuations (hxy) or interfacial
width, σcap

σ2capðϕÞ≡
D
h2xy
E
¼ kBT

2πγðϕÞ ln
Qmax

xy

Qmin
xy

; [S11]

where γðϕÞ is the potential-dependent interfacial tension (Fig.
S1), Qmax represents the maximum wave vector above which
a continuum description of fluctuations breaks down (taken to
be π=10 �A−1), and Qmin is the in-plane experimental resolution
(≈10−4�A−1). Because of the dependence of the interfacial width
and the ion distributions on the electrostatic potential, the pro-
cedure to define ρðzÞ is done at each potential. The X-ray re-
flectivity is calculated by Parratt’s method, where the electron
density profile is divided up into very small segments along the
interfacial normal. The reflection and transmission coefficients
can then be exactly calculated in each segment (including the
effects of absorption), and the reflectivity is then obtained over
the entire domain of electron density variation. Fitting of calcu-
lated reflectivity Rcal to measured data R used only the interfacial
roughness (Table S1) [Qz offset (≈10−4�A−1, which represents
a typical misalignment of the reflectometer)]. The quality of
the fit was determined by the χ2 value, defined by

χ2 ¼ 1
n− 2

X
i

 
R


Qz;i
�
−Rcal



Qz;i
�

σi

!2
; [S12]

where the sum is over the distinct Qz points measured, n is the
total number of data points, and σ is the uncertainty in the
measured reflected signal.
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Fig. S1. Potential-dependent interfacial tension, γðϕÞ, measured using a Wilhelmy plate method at the water/1,2-dichloroethane interface. Note that the
measurements are originally made as a function of the cell potential Δϕcell , but they are plotted as a function of Δϕ ¼ Δϕcell −Δϕpzc , where Δϕpzc was de-
termined to be 0.374 V by the point at which σ ¼ 0.
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Fig. S2. MD simulated average force hF ioniN;V ;E acting on the center of mass of TPFB–. Each data point is the result of a 2-ns simulation run with the ion’s
position fixed at the corresponding interfacial height.

Table S1. X-ray fitted roughness and capillary wave theory values

Capillary wave theory (Å) CORR (±0.20 Å) PB/MD (±0.20 Å)

Δϕ ¼ 0:406 V 5.23 4.91 4.91
Δϕ ¼ 0:346 V 4.92 4.53 4.53
Δϕ ¼ 0:286 V 4.74 4.30 4.30
Δϕ ¼ 0:246 V 4.61 4.32 4.35
Δϕ ¼ 0:174 V 4.54 4.21 4.09
Δϕ ¼ 0:006 V 4.44 4.38 4.40
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Table S2. Partial charges and Lennard–Jones parameters for
TPFB−

Atom σ (Å) « (kcal/mol) q (e)

F 3.50 0.061 −0.145199
C 3.816 0.086 0.079332
B 3.543 0.095 1.2 × 10−5

Table S3. Parameters of bonded interactions of TPFB−

Parameter Value

kBC 631.74 kcal/mol Å2

r eqBC 1.66 Å
kCF 368.70 kcal/mol Å2

r eqCF 1.35 Å
kCC 589.70 kcal/mol Å2

r eqCC 1.38 Å
kCBC 100.0 kcal/mol rad−2

θ eq
CBC 109.47°

kBCC 200.0 kcal/mol rad−2

θ eq
BCC 113.4°

kCCF 67.8 kcal/mol rad−2

θ eq
CCF 119.50°

kCCC 69.8 kcal/mol rad−2

θ eq
CCF 120.0°

VF−C−C−C 9 kcal/mol
VC−C−B−C 90 kcal/mol
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