Supporting Information

Colson et al. 10.1073/pnas.1213027109

SI Materials and Methods

Preparation of MyBP-C. Sf9 insect cells were infected with high-titer recombinant baculoviruses encoding FLAG-tagged full-length or truncated mouse MyBP-C (1), incubated 72 h postinfection. Full-length fast-skeletal (fsMyBP-C), slow-skeletal (ssMyBP-C) and cardiac (cMyBP-C), and truncated cardiac C0–C1 (i.e., C0-pa-C1, where pa is the linker rich in proline and alanine content), C0–C4 (i.e., C0-pa-C1-m-C2-C3-C4, where m is the phosphory-lation motif), C5–C10 (i.e., lacking C0–C4), and Δ C0–C1 (i.e., m-C2-C10, thus lacking C0–C1), as depicted in Fig. 3*A*. Expressed protein was purified by anti-FLAG M2 affinity chromatography as previously described for the purification of full-length FLAG-tagged mouse utrophin except that Triton X-100 was omitted (2–5). The concentration of purified proteins was measured with the Bradford protein assay using BSA as a standard.

Preparation and Labeling of Actin. Actin was prepared from rabbit skeletal muscle (4, 6) and suspended in 100 mM NaCl, 2 mM MgCl₂, 0.2 mM ATP, 1 mM DTT, and 10 mM Tris, pH 8.0. For phosphorescence experiments, actin was labeled at C374 with erythrosin-5'-iodoacetamide (ErIA; AnaSpec) (4). Labeled F-actin (ErIA-actin) was stabilized against depolymerization and denaturation by adding one molar equivalent of phalloidin. The extent of labeling, determined by measuring dye absorbance and protein concentration, was 0.87 ± 0.11 mol dye/mol actin. The concentration of labeled actin was measured with the Bradford protein assay using unmodified actin as a standard, as attached dyes had a negligible effect on this assay (5).

In Vitro Phosphorylation of MyBP-C. Purified MyBP-C was phosphorylated with the catalytic subunit of PKA) Sigma), using 0.01 units of PKA per μ g of MyBP-C for 1 h at 25 °C (1). Phosphorylation status of MyBP-C was assessed by Pro-Q Diamond

- 1. Rybakova IN, Greaser ML, Moss RL (2011) Myosin binding protein C interaction with actin: Characterization and mapping of the binding site. *J Biol Chem* 286(3): 2008–2016.
- Rybakova IN, Patel JR, Davies KE, Yurchenco PD, Ervasti JM (2002) Utrophin binds laterally along actin filaments and can couple costameric actin with sarcolemma when overexpressed in dystrophin-deficient muscle. *Mol Biol Cell* 13(5):1512–1521.
- Rybakova IN, Humston JL, Sonnemann KJ, Ervasti JM (2006) Dystrophin and utrophin bind actin through distinct modes of contact. J Biol Chem 281(15):9996–10001.
- Prochniewicz E, Walseth TF, Thomas DD (2004) Structural dynamics of actin during active interaction with myosin: Different effects of weakly and strongly bound myosin heads. *Biochemistry* 43(33):10642–10652.

phosphoprotein staining followed by Sypro-Ruby protein staining (Invitrogen). Untreated MyBP-C is not fully unphosphorylated. For example, cMyBP-C is expressed with mainly one site phosphorylated (7) and mainly three sites phosphorylated following treatment with PKA (1).

Actin Binding Analysis. Binding of proteins to actin filaments was measured using high-speed cosedimentation (8). Varying concentrations of MyBP-C were added to 5 μ M actin, incubated for 30 min at 20 °C, and then centrifuged at 100,000 × g for 20 min. The resulting pellets and supernatants were separated by SDS/PAGE and stained with Coomassie blue. The fractions of free and bound protein were quantified by densitometry. K_d and B_{max} of binding were obtained by fitting data by the hyperbolic binding function:

$$y = B_{max} * [P] / (K_d + [P]),$$
 [S1]

where y = bound MyBP-C (mol/mol actin) and [P] = free MyBP-C (μ M). Attached dyes had a negligible effect on this assay, so TPA results were compared with and interpreted in light of the extensive studies of MyBP-C actin-binding properties by Ryba-kova et al. (1), using the same purified proteins and experimental conditions.

Electron Microscopy. Samples of phosphorescent actin, prepared for spectroscopic experiments, were diluted to 0.02 mg/mL in MyBP-buffer; applied to glow-discharged, collodion-, and carbon-film-coated copper grids; stained by 1% uranyl acetate; and observed with a JEOL 100 CX electron microscope at an accelerating voltage of 80 kV. Photographs were taken at 5,000× magnification, and digital copies of negatives were saved for viewing (6).

- Prochniewicz E, Henderson D, Ervasti JM, Thomas DD (2009) Dystrophin and utrophin have distinct effects on the structural dynamics of actin. Proc Natl Acad Sci USA 106 (19):7822–7827.
- Prochniewicz E, Zhang Q, Howard EC, Thomas DD (1996) Microsecond rotational dynamics of actin: Spectroscopic detection and theoretical simulation. J Mol Biol 255 (3):446–457.
- Ge Y, Rybakova IN, Xu Q, Moss RL (2009) Top-down high-resolution mass spectrometry of cardiac myosin binding protein C revealed that truncation alters protein phosphorylation state. Proc Natl Acad Sci USA 106(31):12658–12663.
- Rybakova IN, Amann KJ, Ervasti JM (1996) A new model for the interaction of dystrophin with F-actin. J Cell Biol 135(3):661–672.

Colson et al. www.pnas.org/cgi/content/short/1213027109

AS PNAS PNAS

TPA decay
actin
parameters of
the ו
variants or
Ŷ
MyBP
concentration of
f saturating
Effect of
Table S1.

	φ	-	ф	2	L.	-	2	2	r.	0
MyBP-C variant	(-) PKA	(+) PKA	(-) PKA	(+) PKA	(-) PKA	(+) PKA	(-) PKA	(+) PKA	(-) PKA	(+) PKA
None	183 ± 5	168 ± 10	27 ± 1	$23 \pm 1^{\dagger}$	0.037 ± 0.001	$0.041 \pm 0.001^{+}$	0.040 ± 0.001	0.037 ± 0.003	0.034 ± 0.003	0.036 ± 0.006
Fast skeletal	$233 \pm 13^*$	$119 \pm 7^{\dagger}$	$17 \pm 5^{*}$	17 ± 3	$0.012 \pm 0.001^*$	$0.029 \pm 0.001^{+}$	$0.032 \pm 0.001^*$	$0.018 \pm 0.003^{\dagger}$	$0.066 \pm 0.012^*$	0.058 ± 0.006
Slow skeletal	$136 \pm 11^{*}$	177 ± 11	24 ± 4	22 ± 5	$0.016 \pm 0.001^{*}$	$0.037 \pm 0.001^{+}$	$0.021 \pm 0.002^{*}$	$0.030 \pm 0.003^{\dagger}$	$0.077 \pm 0.011^*$	$0.036 \pm 0.006^{\dagger}$
Cardiac	$211 \pm 13^{*}$	$276 \pm 14^{\dagger}$	26 ± 2	29 ± 1	$0.019 \pm 0.003^{*}$	$0.037 \pm 0.001^{+}$	$0.020 \pm 0.003*$	$0.039 \pm 0.001^{+}$	$0.080 \pm 0.010^{*}$	$0.047 \pm 0.005^{\dagger}$
C0-C1	$163 \pm 7*$	158 ± 5	24 ± 1	$28 \pm 1^{\dagger}$	$0.032 \pm 0.002^*$	0.033 ± 0.001	0.037 ± 0.002	0.037 ± 0.002	0.039 ± 0.009	0.040 ± 0.005
C0-C4	$151 \pm 14^{*}$	167 ± 11	$22 \pm 1*$	22 ± 1	$0.026 \pm 0.004^{*}$	0.031 ± 0.002	0.041 ± 0.002	0.044 ± 0.002	0.054 ± 0.014	0.043 ± 0.004
∆C0-C1	205 ± 22	190 ± 13	22 ± 1	25 ± 1	$0.012 \pm 0.002^{*}$	$0.036 \pm 0.002^{\dagger}$	$0.029 \pm 0.002*$	$0.038 \pm 0.001^{+}$	$0.069 \pm 0.005*$	$0.041 \pm 0.008^{\dagger}$
C5-C10	$291 \pm 23*$	280 ± 14	27 ± 3	30 ± 1	$0.017 \pm 0.002*$	0.021 ± 0.001	$0.022 \pm 0.002^*$	0.025 ± 0.001	$0.074 \pm 0.005*$	0.072 ± 0.003
Values are mean	1 + SEM (n < 5)									

Values are mean \pm SEM (n > 5). *Significant change in absence of PKA treatment compared with actin alone (P < 0.05). [†]Significant change due to PKA treatment (P < 0.05).

2 of 2