Supporting Information

Jézégou et al. 10.1073/pnas.1211198109

Fig. S1. Transcriptional regulation of the *LYS9* gene, a known member of the lysine-repressible *LYS* regulon. Strains of the indicated genotypes were transformed with a centromere-based plasmid expressing the *lacZ* reporter gene under the control of the *LYS9* gene promoter. Cells were grown on a minimal glucose/ammonium medium with (+) or without (–) lysine (1 mM). β -Galactosidase activities are the means of at least two independent experiments.

Fig. S2. Expression of PQLC2 in mammalian cells induces lysine uptake. HEK-293 cells (300,000 cells per well) were transfected with an empty pEGFP-N1 vector or with plasmids encoding WT PQLC2-EGFP or PQLC2-LL290/291AA mutation (LL/AA)-EGFP. Two days later, cells were washed and pretreated for 30 min at room temperature with 1 mM *N*-ethylmaleimide (NEM) to decrease the endogenous transport of cationic amino acid. Untreated and NEM-treated cells were then washed, incubated for 30 min with [³H]lysine (0.1 mM) at pH 5.0, washed twice in ice-cold buffer, and subjected to scintillation counting. **P* < 0.02; ***P* < 0.01; NS, not significant by the Student *t* test (*n* = 3).

Fig. S3. Extracellular pH dependence of PQLC2-mediated lysine uptake. [³H]Lysine (0.1 mM) uptake into oocytes expressing WT PQLC2 or the LL290/291AA (LL/ AA) mutant was measured at distinct pH values. Uptake is activated in conditions mimicking the lysosomal environment of PQLC2. Means ± SEMs of four to five oocytes are shown.

Fig. 54. Selectivity of PQLC2 toward methylated cationic amino acids resembles that of lysosomal system c. (A) Arginine uptake into paired sets of oocytes expressing either PQLC2-LL290/291AA mutation (LL/AA)-EGFP or the plasma membrane transporter CAT-1 was analyzed at pH 5.0, in the absence or presence of 10 mM unlabeled L-arginine, *N*- α -methyl-L-arginine (N α Me-Arg), or ε -*N*-trimethyl-L-lysine (3Me-Lys) added simultaneously to [³H]L-arginine (40 nM). N α Me-Arg and 3Me-Lys preferentially inhibit PQLC2 rather than CAT-1, in agreement with earlier biochemical studies on lysosome fractions. Means \pm SEMs of 8–14 oocytes from two batches are shown. ****P* < 10⁻⁹; ***P* < 0.01; **P* < 0.02 by the Student *t* test. (*B* and *C*) Two-electrode voltage clamp recording of PQLC2-LL/AA oocytes at -40 mV and pH 5.0 shows that the two methylated compounds (10 mM) are translocated by PQLC2. Raw traces from a PQLC2-LL/AA-EGFP oocyte and mean current responses normalized to the L-arginine current from two oocytes are shown in *B* and *C*, respectively.

Fig. S5. $L-[^{3}H]$ lysine methyl ester ($[^{3}H]$ Lys*O*Me) applied to human fibroblasts is predominantly converted to lysine. Fibroblasts were incubated for 2 h at 37 °C in 5% CO₂ with 0.2 mM $[^{3}H]$ Lys*O*Me, washed, and further incubated at 37 °C (chase period). Water-soluble cell extracts (triangles) were then analyzed by TLC and compared with an equivalent amount of $[^{3}H]$ Lys*O*Me solution (red circles). Most of the water-soluble radioactivity was recovered as lysine. This intracellular $[^{3}H]$ lysine pool decays with a time scale of minutes.

Fig. S6. Calibration curve of the mixed disulfide (MxD) liquid chromatography tandem MS assay. Increasing dilutions from a known MxD solution were tested. The assay is linear up to 5 μ M (R^2 = 0.9992).

Table S1. Plasmid	Yeast plasmids used in this study	Source
	Description	
pFL38	CEN-ARS (URA3)	Bonneaud et al. (1)
pLL063	CEN-ARS (URA3) YPQ1-GFP	This study
pLL161	CEN-ARS (URA3) YPQ2-GFP	This study
pLL106	CEN-ARS (URA3) GAL-YPQ3-GFP	This study
pCJ502	CEN-ARS (URA3) GAL-rPQLC2-GFP	This study

1. Bonneaud N, et al. (1991) A family of low and high copy replicative, integrative and single-stranded S. cerevisiae/E. coli shuttle vectors. Yeast 7(6):609–615.

Strain	Genotype	Source
23344C	ura3	Laboratory collection
EL029	ura3 ypq1∆	This study
EL031	ura3 ypq2∆	This study
LL118	ura3 ypq3∆	This study
LL178	ura3 ypq1 Δ ypq2 Δ ypq3 Δ	This study
LL159	ura3 vba1∆ vba2∆ vba3∆	This study
JA965	ura3 vba1∆ vba2∆ vba3∆ ypq2∆	This study

All strains derive from the Sigma1278b WT strain. Mutant strains were isolated by insertion of a *kanMX2* geneticin resistance gene that was amplified by PCR assay using pUG06 plasmid as a template.

PNAS PNAS