Supporting Information

Organic Letters

"Substituted Imidazo[1,2-a]pyridines as β -Strand Peptidomimetics"

Chang Won Kang, Yongmao Sun, and Juan R. Del Valle* Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute

CONTENTS (34 pages)

Experimental Procedures	S2 – S11
• 1D (¹ H and ¹³ C) NMR Spectra	S12 – S25
• 2D NMR Spectra	S26 - S30
• $\delta\Delta/\delta T$ Experiments	S31 – S32
Concentration Dependence Experime	ents S33 – S34

EXPERIMENTAL PROCEDURES

General Techniques. Unless stated otherwise, reactions were performed in flame-dried glassware under a positive pressure of argon or nitrogen gas using dry solvents. Commercial grade reagents and solvents were used without further purification except where noted. Diethyl ether, toluene, dimethylformamide dichloromethane, and tetrahydrofuran were purified by a Glass Contour column-based solvent purification system. Other anhydrous solvents were purchased directly from chemical suppliers. Thin-layer chromatography (TLC) was performed using silica gel 60 F254 pre-coated plates (0.25 mm). Flash chromatography was performed using silica gel (60 μ m particle size). The purity of all compounds was judged by TLC analysis (single spot/two solvent systems) using a UV lamp, CAM (ceric ammonium molybdate), ninhydrin, or basic KMnO₄ stain(s) for detection purposes. 1D and 2D NMR spectra were recorded on a 400 or 500 MHz spectrometer. Proton chemical shifts are reported as δ values relative to residual signals from deuterated solvents (CDCl₃ or DMSO-*d*₆).

General Procedure for the Synthesis of IP Scaffolds from β -ketoesters. A mixture of β ketoester (0.50 mmol) and solid *N*-bromosuccinimide (0.55 mmol) in PEG-400 (2 mL) was stirred at room temperature until TLC indicated consumption of the starting material (30-90 min). The reaction mixture was diluted with water and extracted with Et₂O. The combined organic layers were washed with water and brine, dried over Na₂SO₄, then filtered and concentrated. The crude residue was then dissolved in 2.5 mL MeCN and treated with either 2,3diaminopyridine or N²-amino-N³-benzyloxycarbonylaminopyridine (0.50 mmol) and NaHCO₃ (0.55 mmol). The reaction mixture was heated to 90 °C in a sealed tube and strirred 15 h. The solution was then cooled to rt, diluted with EtOAc, filtered through a pad of celite, and concentrated. Purification by flash chromatography over silica gel (EtOAc/hexanes eluent) afforded the desired imidazo[1,2-a]pyridines.

Methyl 8-amino-2-methylimidazo[1,2-*a*]pyridine-3-carboxylate (2a). Yield: 53%; ¹H NMR (400 MHz, CDCl₃) δ 8.71 (d, *J* = 6.8 Hz, 1H), 6.78 (t, *J* = 7.2 Hz, 1H), 6.54 (d, *J* = 7.5 Hz, 1H), 4.50 (s, 2H), 3.94 (s, 3H), 2.69 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 162.1, 151.1, 140.3, 135.1, 118.4, 114.8, 113.7, 106.5, 51.4, 16.7; HRMS (ESI-TOF) *m/z* [M+H]⁺ calcd for C₁₀H₁₂N₃O₂ 206.0924, found 206.0933.

Ethyl 8-amino-2-phenylimidazo[1,2-*a*]pyridine-3-carboxylate (2b). Yield: 55%; ¹H NMR (400 MHz, CDCl₃) δ 8.81 (d, *J* = 6.9 Hz, 1H), 7.76 – 7.71 (m, 2H), 7.52 – 7.35 (m, 3H), 6.83 (t, *J* = 7.2 Hz, 1H), 6.56 (d, *J* = 7.5 Hz, 1H), 4.63 (s, 2H), 4.27 (q, *J* = 7.2 Hz, 2H), 1.19 (t, *J* = 6.8 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 161.4, 152.2, 140.7, 135.9, 135.0, 130.3, 128.7, 127.8, 118.5, 115.4, 113.2, 106.3, 60.5, 14.2; HRMS (ESI-TOF) *m/z* [M + H]⁺ calcd for C₁₆H₁₆N₃O₂ 282.1237, found 282.1250.

Methyl 8-(((benzyloxy)carbonyl)amino)-2-methylimidazo[1,2-*a*]pyridine-3-carboxylate (3a). Yield: 80%; ¹H NMR (400 MHz, CDCl₃) δ 8.92 (d, *J* = 6.9 Hz, 1H), 8.18 (s, 1H), 8.05 (d, *J* = 6.7 Hz, 1H), 7.46 – 7.31 (m, 5H), 6.96 (t, *J* = 7.3 Hz, 1H), 5.26 (s, 2H), 3.96 (s, 3H), 2.68 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 161.8, 153.3, 151.4, 139.8, 135.8, 128.7, 128.5, 128.3, 126.8, 121.8, 114.4, 114.1, 111.9, 67.5, 51.5, 16.5; HRMS (ESI-TOF) *m/z* [M + H]⁺ calcd for C₁₈H₁₈N₃O₄ 340.1292, found 340.1291.

Ethyl 8-(((benzyloxy)carbonyl)amino)-2-phenylimidazo[1,2-*a*]pyridine-3-carboxylate (3b). Yield: 92%. ¹H NMR (400 MHz, CDCl₃) δ 9.03 (dd, J = 7.0, 0.9 Hz, 1H), 8.22 (bs, 1H),

8.10 (d, J = 7.3 Hz, 1H), 7.78 – 7.69 (m, 2H), 7.51 – 7.30 (m, 8H), 7.02 (t, J = 7.3 Hz, 1H), 5.27 (s, 2H), 4.31 (q, J = 7.1 Hz, 2H), 1.22 (t, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 161.2, 153.4, 152.3, 140.2, 135.9, 134.39, 130.3, 129.0, 128.8, 128.6, 128.5, 127.9, 127.6, 122.2, 115.0, 113.6, 112.0, 67.6, 60.8, 14.2. HRMS (ESI-TOF) (m/z) [M+H]⁺ calcd for C₂₄H₂₂N₃O₄, 416.1605, found 416.1605.

Methyl 8-(((benzyloxy)carbonyl)amino)-2-(but-3-en-1-yl)imidazo[1,2-*a*]pyridine-3carboxylate (3c). Yield: 78%; ¹H NMR (400 MHz, CDCl₃) δ 8.91 (d, *J* = 6.9 Hz, 1H), 8.10 (s, 1H), 8.03 (d, *J* = 6.9 Hz, 1H), 7.47 – 7.30 (m, 5H), 6.94 (t, *J* = 7.3 Hz, 1H), 5.91 (ddt, *J* = 16.9, 10.2, 6.6 Hz, 1H), 5.25 (s, 2H), 5.07 (ddd, *J* = 17.1, 3.4, 1.6 Hz, 1H), 4.98 (ddt, *J* = 10.2, 2.0, 1.1 Hz, 1H), 3.95 (s, 3H), 3.19 – 3.09 (m, 2H), 2.51 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 161.6, 154.6, 153.2, 139.8, 138.00, 137.9, 135.6, 128.7, 128.4, 126.9, 121.8, 115.0, 114.3, 113.6, 111.7, 67.4, 51.5, 33.3, 29.4; HRMS (ESI-TOF) *m/z* [M + H]⁺ calcd for C₂₁H₂₂N₃O₄ 380.1605, found 380.1614.

Methyl 8-(((benzyloxy)carbonyl)amino)-2-(((4-methoxybenzyl)oxy)methyl)imidazo[1,2*a*]pyridine-3-carboxylate (3d). Yield: 39%; ¹H NMR (400 MHz, CDCl₃) δ 8.93 (d, *J* = 7.0 Hz, 1H), 8.21 (s, 1H), 8.08 (d, *J* = 7.0 Hz, 1H), 7.48 – 7.28 (m, 10H), 7.00 (t, *J* = 7.3 Hz, 1H), 5.26 (s, 2H), 4.95 (s, 2H), 4.71 (s, 2H), 3.87 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 161.1, 153.2, 149.8, 140.2, 137.9, 135.7, 128.6, 128.4, 128.3, 128.2, 128.1, 127.7, 127.5, 121.7, 115.0, 114.2, 111.9, 73.1, 67.4, 65.7, 51.6; HRMS (ESI-TOF) *m*/*z* [M + H]⁺ calcd for C₂₅H₂₄N₃O₅ 446.1711, found 446.1702.

Ethyl 8-(((benzyloxy)carbonyl)amino)-2-(4-(methoxymethoxy)phenyl)imidazo[1,2a]pyridine-3-carboxylate (3e). Yield: 75%; ¹H NMR (400 MHz, CDCl₃) δ 9.00 (dd, J = 6.9, 0.9 Hz, 1H), 8.23 (s, 1H), 8.07 (d, J = 7.7 Hz, 1H), 7.72 (d, J = 8.7 Hz, 2H), 7.50 – 7.28 (m, 4H), 7.10 (m, 2H), 6.99 (t, J = 7.4 Hz, 1H), 5.25 (s, 2H), 5.23 (s, 2H) 4.33 (q, J = 7.1 Hz, 2H), 3.50 (s, 3H), 1.27 (t, J = 7.2 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 161.0, 157.8, 153.2, 139.9, 135.7, 131.6, 131.5, 128.6, 128.4, 128.2, 127.2, 122.0, 116.1, 115.4, 114.6, 113.0, 111.8, 94.3, 67.4, 60.6, 56.0, 14.1; HRMS (ESI-TOF) (m/z) [M+H]⁺ calcd for C₂₆H₂₆N₃O₆, 476.1822, found 476.1827.

Methyl

8-(((benzyloxy)carbonyl)amino)-2-(2-(bis(tert-

butoxycarbonyl)amino)ethyl)imidazo[1,2-*a*]**pyridine-3-carboxylate** (**3f**). Yield: 72%; ¹H NMR (400 MHz, CDCl₃) δ 8.92 (d, *J* = 6.9 Hz, 1H), 8.12 (s, 1H), 8.02 (d, *J* = 6.1 Hz, 1H), 7.49 – 7.31 (m, 5H), 6.95 (t, *J* = 7.3 Hz, 1H), 5.27 (s, 2H), 4.02 (t, *J* = 7.0 Hz, 2H), 3.96 (s, 3H), 3.36 (t, *J* = 7.0 Hz, 2H), 1.42 (s, 18H); ¹³C NMR (101 MHz, CDCl₃) δ 161.6, 153.3, 152.7, 152.2, 140.1, 135.9, 128.8, 128.1, 128.5, 127.1, 121.8, 114.6, 114.2, 111.7, 82.2, 67.6, 51.7, 45.8, 29.6, 28.1; HRMS (ESI-TOF) (*m/z*) [M+H]⁺ calcd for C₂₉H₃₇N₄O₈, 569.2606, found 569.2615.

Methyl

8-(((benzyloxy)carbonyl)amino)-2-(2-(2,3-bis(tert-

butoxycarbonyl)guanidino)ethyl)imidazo[1,2-*a***]pyridine-3-carboxylate (3g). A solution of 3f (57 mg, 0.10 mmol) in 25% TFA in DCM (4 mL) was stirred for 2 h at rt. The reaction was diluted with EtOAc and concentrated under reduced pressure. This dilution/evaporation sequence**

was repeated two more times to remove excess TFA and the crude material was dried under high vacuum. The crude TFA salt was dissolved in DCM (4 mL) and treated with NEt₃ (40 mg, 0.4 mmol) and 1,3-di-Boc-2-(trifluoromethyl sulfonyl)guanidine (47 mg, 0.12 mmol). The mixture was stirred for 3 h at rt. The mixture was then concentrated under reduced pressure and the residue was purified by silica gel flash chromatography (10% EtOAc/hexanes eluent) to give **3g** as white solid. (39 mg, 64% for 2 steps). ¹H NMR (400 MHz, CDCl₃) δ 11.49 (s, 1H), 9.40 (s, 1H), 8.96 (d, *J* = 6.9 Hz, 1H), 8.32 (s, 1H), 8.08 (d, *J* = 7.6 Hz, 1H), 7.46 – 7.30 (m, 5H), 6.98 (t, *J* = 7.3 Hz, 1H), 5.26 (s, 2H), 3.94 (s, 3H), 3.92 – 3.84 (m, 2H), 3.33 (t, *J* = 6.0 Hz, 1H), 1.50 (s, 9H), 1.38 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 163.6, 161.4, 155.8, 153.5, 152.8, 152.2, 140.0, 135.8, 128.6, 128.4, 128.3, 127.2, 121.8, 114.6, 113.6, 112.8, 82.8, 79.3, 67.3, 51.5, 39.6, 28.7, 28.3, 27.9; HRMS (ESI-TOF) *m*/*z* [M + H]⁺ calcd for C₃₀H₃₈N₆O₈ 611.2824, found 611.2821.

Cbz-Leu-IP(Me)-OMe (4). To a solution of Cbz-Leu-OH (265 mg, 1.00 mmol) and **2a** (103 mg, 0.50 mmol) in DCM (10 mL) was added EDC·HCl (192 mg, 1.00 mmol) at rt. After stirring 24 h at rt, the solvent was removed under reduced pressure and the residue was purified by silica gel flash chromatography (20% EtOAc/hexanes eluent) to give **4** as a pale yellow form (207 mg, 91%). ¹H NMR (400 MHz, CDCl₃) δ 9.27 (s, 1H), 8.93 (d, *J* = 6.9 Hz, 1H), 8.29 (d, *J* = 7.7 Hz, 1H), 7.39 – 7.22 (m, 5H), 6.90 (t, *J* = 7.3 Hz, 1H), 5.54 (d, *J* = 7.9 Hz, 1H), 5.13 (s, 2H), 4.59 – 4.48 (m, 1H), 3.96 (s, 3H), 2.67 (s, 3H), 1.83 – 1.75 (m, 2H), 1.69 – 1.61 (m, 1H), 0.96 (d, *J* =

5.9 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 172.1, 161.8, 156.5, 151.4, 140.0, 136.4, 128.7, 128.4, 128.3, 126.4, 123.0, 114.7, 114.5, 114.0, 67.4, 54.8, 51.7, 41.8, 25.0, 23.3, 22.0, 16.5; HRMS (ESI-TOF) *m/z* [M + H]⁺ calcd for C₂₄H₂₉N₄O₅ 453.2133, found 453.2151.

Cbz-IP(Me)-Phe-OMe (5). A solution of 3a (154 mg, 0.45 mmol) and LiOH·H₂O (38 mg, 0.90 mmol) in 6 mL of 1:1 THF:H₂O was stirred for 17 h at rt. The reaction was quenched with 1M aq. HCl (0.45 mL, 0.45 mmol) and concentrated. The hydrolyzed intermediate was dried under high vacuum to remove excess water. The crude mixture was dissolved in DMF (6 mL) and treated with NEt₃ (184 mg, 1.80 mmol), H-Phe-OMe HCl (117 mg, 0.54 mmol), HBTU (206 mg, 0.54 mmol), and HOBt (12 mg, 0.09 mmol). The reaction was stirred for 24 h at rt. The solvent was evaporated under reduced pressure and the residue was diluted with EtOAc, washed with water and brine, dried over MgSO₄, and filtered. The organic layers were concentrated under reduced pressure and the residue was purified by silica gel flash chromatography (30% EtOAc/hexanes eluent) to give 5 as pale yellow foam (167 mg, 76% over 2 steps). ¹H NMR (400 MHz, CDCl₃) δ 8.97 (d, J = 7.0 Hz, 1H), 8.00 (s, 1H), 7.96 (d, J = 7.1 Hz, 1H), 7.45 – 7.33 (m, 4H), 7.33 - 7.23 (m, 4H), 7.13 (dd, J = 7.7, 1.6 Hz, 2H), 6.88 (t, J = 7.3 Hz, 1H), 6.22 (d, J = 7.2Hz, 1H), 5.24 (s, 2H), 5.14 - 5.06 (m, 1H), 3.81 (s, 3H), 3.33 (dd, J = 13.9, 5.6 Hz, 1H), 3.24 $(dd, J = 13.9, 5.6 Hz, 1H), 2.44 (s, 3H); {}^{13}C NMR (101 MHz, CDCl₃) \delta 172.1, 160.7, 153.2,$ 144.8, 139.1, 135.7, 135.6, 129.3, 128.7, 128.6, 128.4, 128.3, 127.4, 126.5, 121.9, 116.3, 113.9,

111.2, 67.3, 53.2, 52.6, 37.3, 16.2; HRMS (ESI-TOF) $m/z [M + H]^+$ calcd for $C_{27}H_{27}N_4O_5$ 487.1976, found 487.1974.

Cbz-Leu-IP(Me)-Phe-OMe (6). A mixture of 5 (107 mg, 0.22 mmol) and a catalytic amount of 10% Pd(OH)₂/C (0.2 g/mmol, 44 mg) in MeOH (6 mL) was stirred under H₂ atmosphere (balloon) for 1 h at rt. The crude mixture was filtered through celite and the filtrate was concentrated under reduced pressure. The crude amine was dissolved in DCM (6 mL) and treated with Cbz-Leu-OH (117 mg, 0.44 mmol) and EDC·HCl (85 mg, 0.44 mmol). After stirring 24 h at rt, the mixture was concentrated and the residue was purified by silica gel flash chromatography (30% EtOAc/hexanes) to give 6 as pale yellow solid. (78 mg, 59% over 2 steps). ¹H NMR (400 MHz, CDCl₃) δ 9.17 (s, 1H), 9.00 (d, J = 6.9 Hz, 1H), 8.23 (d, J = 7.6 Hz, 1H), 7.42 - 7.22 (m, 8H), 7.19 - 7.08 (m, 2H), 6.85 (t, J = 7.3 Hz, 1H), 6.27 (d, J = 7.1 Hz, 1H), 5.43 (d, J = 8.0 Hz, 1H), 5.13 (s, 2H), 5.11 – 5.05 (m, 1H), 4.53 – 4.44 (m, 1H), 3.81 (s, 3H), 3.34 (dd, J = 13.9, 5.6 Hz, 1H), 3.24 (dd, J = 13.9, 5.7 Hz, 1H), 2.45 (s, 3H), 1.79 - 1.70 (m, 2H), 1.68 - 1.60 (m, 1H), 0.99 - 0.92 (m, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 172.1, 171.6, 160.6, 156.2, 144.8, 139.3, 136.1, 135.6, 129.3, 128.7, 128.5, 128.2, 128.0, 127.4, 126.0, 122.9, 116.3, 113.8, 113.6, 67.2, 54.4, 53.2, 52.6, 41.6, 37.7, 24.8, 23.0, 21.8, 16.1; HRMS (ESI-TOF) $m/z [M + H]^+$ calcd for C₃₃H₃₈N₅O₆ 600.2817, found 600.2808.

Alternatively, **6** could be prepared from **2a** in improved overall yield using the following procedure: A solution of **2a** (205 mg, 1.00 mmol) and LiOH·H₂O (126 mg, 3.00 mmol) in 8 mL of 1:1 THF:H₂O was stirred for 17 h at rt. The reaction was quenched with 2 mL of 1M aq. HCl and concentrated under reduced pressure. The hydrolyzed intermediate dried under high vacuum to remove excess water. The crude zwitterion was dissolved in DMF (10 mL) and treated with NEt₃ (405 mg, 4.00 mmol), HCl·H₂N-Phe-OMe (216 mg, 1.00 mmol), HBTU (455 mg, 1.20 mmol), and HOBt (27 mg, 0.20 mmol). The reaction was stirred for 24 h at rt. The reaction was concentrated and the remaining residue was diluted with EtOAc, washed with water and brine, and dried over MgSO₄. The organic layers were concentrated under reduced pressure and the residue was purified by passage through a silica gel pad (50% EtOAc/hexanes eluent) to give the amide intermediate. To a solution of this amide in 10 mL of DCM was added Cbz-Leu-OH (530 mg, 2.00 mmol) and EDC·HCl (383 mg, 2.00 mmol) at rt. After stirring 24 h at rt, the reaction was concentrated, and the residue was purified by solid (353 mg, 59% over 3 steps).

Cbz-IP1(Me)-Leu-IP2(Me)-Phe-OMe (7). A mixture of **6** (60 mg, 0.10 mmol) and a catalytic amount of 10% Pd(OH)₂/C (20 mg) in MeOH (5 mL) was stirred under H₂ atmosphere

(balloon) for 1 h at rt. The crude mixture was filtered through celite and the filtrate was concentrated to give the crude amine. Separately, a solution of 3a (40 mg, 0.12 mmol) and LiOH·H₂O (10 mg, 0.24 mmol) in 3 mL of 1:1 THF:H₂O was stirred for 17 h at rt. The reaction was neutralized with 120 µL of 1M aq. HCl and concentrated. The hydrolyzed intermediate was dried under high vacuum. Both the crude carboxylic acid and amine from above crude materials were dissolved in DMF (8 mL) and treated with NEt₃ (47 mg, 0.48 mmol), HBTU (53 mg, 0.14 mmol), and HOBt (3.2 mg, 23 µmol). The reaction was stirred for 24 h at rt. The mixture was concentrated and the remaining residue diluted with EtOAc, washed with water and brine, and dried over MgSO₄. The organic layer was concentrated under reduced pressure and the residue was purified by silica gel flash chromatography (50% EtOAc/hexanes eluent) to give 7 as pale yellow solid. (55 mg, 71% for 2 steps). ¹H NMR (400 MHz, CDCl₃) δ 9.34 (s, 1H), 9.03 (dd, J = 6.9, 1.0 Hz, 1H), 9.02 (dd, J = 6.9, 1.0 Hz, 1H), 8.25 (d, J = 7.3 Hz, 1H), 8.04 (s, 1H), 7.97 (d, J) = 6.8 Hz, 1H), 7.45 – 7.26 (m, 8H), 7.13 (dd, J = 7.6, 1.8 Hz, 2H), 6.88 (t, J = 7.2 Hz, 1H), 6.87 (t, J = 7.6 Hz, 1H), 6.35 (d, J = 6.4 Hz, 1H), 6.24 (d, J = 7.3 Hz, 1H), 5.25 (s, 2H), 5.09 (dd, J = 7.3 Hz, 1H), 5.25 (s, 2Hz, 1H), 5.25 (s, 2Hz, 1Hz), 5.25 (s, 2Hz),12.8, 5.6 Hz, 1H), 5.01 (dd, J = 11.0, 5.9 Hz, 1H), 3.82 (s, 3H), 3.34 (dd, J = 13.9, 5.6 Hz, 1H), 3.24 (dd, J = 13.9, 5.6 Hz, 1 H), 2.77 (s, 3H), 2.46 (s, 3H), 1.91 - 1.75 (m, 3H), 1.04 - 1.01 (m, 3H), 1.04 - 1.016H); ¹³C NMR (101 MHz, CDCl₃) δ 172.1, 171.4, 161.3, 160.6, 153.2, 144.8, 144.7. 139.3, 139.2, 135.7, 135.6, 129.3, 128.7, 128.6, 128.4, 128.3, 127.4, 126.5, 126.0, 123.0, 122.0, 116.4, 116.3, 113.9, 113.8, 113.7, 111.3, 67.3, 53.2, 52.7, 52.6, 41.6, 37.7, 25.1, 23.1, 22.0, 16.5, 16.2; HRMS (ESI-TOF) m/z [M + H]⁺ calcd for C₄₂H₄₅N₈O₇ 773.3406, found 773.3401.

Cbz-Ile-IP1(Me)-Leu-IP2(Me)-Phe-OMe (8). A mixture of 7 (24.5 mg, 0.032 mmol) and a catalytic amount of 10% Pd(OH)₂/C (6 mg) in 6 mL of 2:1 MeOH:THF was stirred under H₂ atmosphere (balloon) for 1 h at rt. The crude mixture was filtered through celite and the filtrate was concentrated under reduced pressure. The crude amine was dissolved in DCM (6 mL) and treated with Cbz-Ile-OH (17 mg, 64 µmol) and EDC HCl (12 mg, 64 µmol). After stirring 24 h at rt, the solvent was evaporated, and the residue was purified by silica gel flash chromatography (2:1:1 EtOAc:hexanes:CHCl₃ eluent) to give 8 as pale yellow solid. (15 mg, 54% for 2 steps). ¹H NMR (400 MHz, CDCl₃) δ 9.37 (s, 1H), 9.09 (s, 1H), 9.05 (d, J = 6.9 Hz, 1H), 9.02 (d, J = 6.9Hz, 1H), 8.26 (d, J = 8.0 Hz, 1H), 8.24 (d, J = 7.8 Hz, 1H), 7.42 – 7.23 (m, 8H), 7.13 (d, J = 6.1Hz, 2H), 6.87 (t, J = 7.5 Hz, 1H), 6.85 (t, J = 7.6 Hz, 1H), 6.45 (d, J = 7.8 Hz, 1H), 6.26 (d, J = 7.8 Hz, 1H), 7.8 Hz, 1H), 7.8 Hz, 1H), 7.8 Hz, 1H), 7.8 H 7.2 Hz, 1H), 5.50 (d, J = 8.7 Hz, 1H), 5.14 (s, 2H), 5.09 (dd, J = 12.7, 5.7 Hz, 1H), 5.04 - 4.96 (m, 1H), 4.51 - 4.26 (m, 1H), 3.81 (s, 3H), 3.33 (dd, J = 13.9, 5.6 Hz, 1H), 3.24 (dd, J = 13.9, 5.6 Hz, 1H), 2.77 (s, 3H), 2.46 (s, 3H), 2.02 – 1.95 (m, 1H), 1.95 – 1.88 (m, 1H), 1.86 – 1.77 (m, 2H), 1.61 - 1.51 (m, 1H), 1.22 - 1.14 (m, 1H), 1.05 - 0.86 (m, 12H); ¹³C NMR (101 MHz, CDCl₃) & 172.1, 171.4, 170.8, 161.2, 160.6, 144.8, 144.7, 139.3, 139.2, 135.6, 129.3, 128.7, 128.5, 128.2, 128.1, 127.4, 126.0, 125.9, 123.1, 123.0, 116.5, 116.3, 116.0, 113.8, 113.7, 113.5, 67.2, 60.45, 53.2, 52.6, 52.5, 41.6, 37.7, 29.9, 25.1, 24.6, 23.1, 22.0, 16.5, 16.2, 15.6, 11.4; HRMS (ESI-TOF) m/z [M + H]⁺ calcd for C₄₈H₅₆N₉O₈ 886.4246, found 886.4227.

1D NMR SPECTRA

S13

S18

S20

S22

2D NMR SPECTRA

General. COSY spectra were recorded on an Agilent Technologies 400 MHz NMR at 298 K by collecting 2048 complex data points in the t_2 domain by averaging 32 scans and 256 increments in the t_1 domain. The original FIDs were zero-filled to give a final matrix of 1024 by 1024 real data points. A 0° sine-bell window function was applied in both dimensions. COSY data were obtained with 5 mM compound in CDCl₃.

ROESY spectra were recorded on an Agilent Technologies 500 MHz NMR at 298 K by collecting 4096 complex data points in the t₂ domain by averaging 32 scans and 512 increments in the t₁ domain with a mixing time of 300 ms. The original FIDs were zero-filled to give a final matrix of 2048 by 2084 real data points. A 90° sine-square window function was applied in both dimensions. ROESY data were obtained with 1 mM compound in CDCl₃. All the data were processed and analyzed using MestreNova 7.1 software.

COSY spectrum of compound 6 in CDCl₃ (400 MHz):

(udd) [J

ROESY spectrum of compound 6 in CDCl₃ (500 MHz):

COSY spectrum of compound 8 in CDCl₃ (500 MHz):

(udd) [J

ROSEY spectrum of compound 8 in CDCl₃ (500 MHz):

$\delta \Delta / \delta T$ EXPERIMENTS

Variable temperature ¹H NMR spectra at 400 MHz (in DMSO-d₆):

Tabular data for $\delta \Delta / \delta T$ experiments:

Ductor							
Proton	20 °C	30 °C	40 °C	50 °C	60 °C	70 °C	80 °C
IleNH	7.781	7.740	7.699	7.649	7.569	7.501	7.444
IP1NH	9.972	9.899	9.831	9.768	9.709	9.654	9.603
LeuNH	8.513	8.474	8.433	8.390	8.345	8.298	8.249
IP2NH	10.206	10.126	10.054	9.988	9.928	9.873	9.821
PheNH	8.372	8.304	8.234	8.162	8.090	8.018	7.943

Concentration Dependence of amide NH chemical shifts of ck-05-066 @ 20 °C

Proton	δ (ppm) @ concentration								
	1.50 mM	2.00 mM	2.67 mM	3.56 mM	4.75 mM	6.33 mM	8.44 mM	11.25 mM	15.00 mM
IP 1 NH	-	9.256	9.267	9.290	9.317	9.336	9.359	9.386	9.414
IP 2 NH	-	-	8.969	8.990	-	-	-	9.089	9.126
Leu NH	6.385	6.395	6.408	6.428	6.447	6.460	6.476	6.496	6.512
Phe NH	6.244	6.249	6.253	6.257	6.263	6.269	6.275	6.283	6.292

Concentration Dependence of α -proton chemical shifts of ck-05-066 @ 20 °C

Destad	δ (ppm) @ concentration								
Proton	1.50 mM	2.00 mM	2.67 mM	3.56 mM	4.75 mM	6.33 mM	8.44 mM	11.25 mM	15.00 mM
Phe α	5.097	5.099	5.100	5.101	5.101	5.102	5.101	5.101	5.100
Leu a	4.985	4.988	4.990	4.994	4.997	4.998	4.999	5.001	5.002
lle α	4.374	4.375	4.372	4.369	4.368	4.367	4.363	4.362	4.360

