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Computational Details of Our Coarse-Grained Explicit-Chain Model.
Our explicit-chain results were simulated using a Cα coarse-
grained model with desolvation barriers in its native-centric po-
tential (1, 2) and an improved nonnative repulsive term (3). The
definition of native contacts and the Langevin dynamics parame-
ters are identical to the definition and parameters in ref. 2. Time is
measured in a number of simulation time steps. For each of the
eight proteins in Table S1, a long simulation covering>50 folding–
unfolding cycles was used to determine the normalized equilibrium
conformational distribution Peq(Q). All results reported in this
paper were simulated around each model protein’s transition
midpoint, i.e., when Peq(QD)≈ Peq(QN). Kinetic properties of each
protein were deduced from ≥1,200 folding trajectories. We have
assessed the reliability of our simulations by considering the de-
viations in results from independent runs of>1,300 trajectories (in
addition to runs listed in Table S1) for 2CI2 and 1SHF. For these
proteins’ data in Fig. 3, the largest deviation in ‹(CO)TP›/‹COFP›
was <2%, and there was essentially no deviation in ‹[Δ‡Pc(Q)]2›.
The contact maps for PFP,ij(Q

‡) of 1SHF from two independent
runs were also practically identical.

Nonexplicit-Chain Monte Carlo Diffusion Model: Metropolis and
Kawasaki Algorithms. As discussed in the text, the application of
a diffusion perspective to understand experimental protein folding
(refs. 4–9 and references therein) has benefitted significantly from
recent advances in general theory of diffusive dynamics (refs. 10–
12 and references therein). Although often only idealized potential
functions (11) rather than more realistic biophysics-based poten-
tial functions were used in analytical treatments of diffusion, such
developments are important. They established universal principles
(10), pointed to potential limitations of using a 1D diffusion pic-
ture to describe configurational changes in 3D (12), and provided
conceptual insights (e.g., the general trend of cooperative tran-
sitions and transition paths exhibited in Fig. 1 for our 2CI2model is
quite similar to figure 1 in ref. 11 for an idealized double-well
potential). For protein folding, much theoretical progress and
physical understanding has been gained recently from an extensive
body of work from Best and Hummer (refs. 4–6 and references
therein) and Wang and coworkers (refs. 7–9 and references
therein). Among many advances, one of these efforts demon-
strated how the parameters governing an approximate mapping
between explicit-chain folding/unfolding dynamics and a 1D dif-
fusive process with a coordinate-dependent diffusion coefficient
may be optimized (4). While recognizing the importance of these
recent achievements, the aim of the present study is not directed
primarily to an accurate reproduction of explicit-chain data
through the introduction of a coordinate-dependent diffusion
coefficient. Instead, as a complement to the explicit-chain, struc-
ture-based simulations in this study, we endeavored to uncover
basic concepts with regard to the relationship between diffusion
and the deviations from preequilibrium (as applied to stopped-
flow folding trajectories) and the properties of folding transition
paths revealed by our explicit-chain dynamics. For this purpose, we
asked how far a simple picture of diffusion with a constant co-
ordinate-independent diffusion coefficient along a free energy
profile defined by Q can account for the newly uncovered explicit-
chain behaviors. Mathematically, 1D diffusive processes with dif-
ferent coordinate-dependent diffusion coefficients can be mapped
onto one another provided that the coordinate (progress) variable
is also transformed (6). However, the process that offers arguably
the most physical appeal is the one with a coordinate-independent

diffusion coefficientD=D0, because it coincides with our intuitive
notion of diffusion and spatial homogeneity. Because the co-
ordinate-dependent D(Q) values for model protein free energy
profiles defined on the common progress variable Q (which is also
a simple intuitive construct) have been found to be “near constant”
(6)—thus, no large errors are expected to be incurred by using D0
instead ofD(Q)—we stipulated that useful insights would be gained
by applying coordinate-independent diffusion on Q-defined free
energy profiles to address the issues of preequilibrium and transition
paths at hand.
Here, we used nonexplicit-chain MC simulations to model

various diffusion processes with an effective coordinate (Q)-in-
dependent D0. All simulations were based on the free energy
profile βΔG(Q) = −lnPeq(Q) obtained from our explicit-chain
model. We found it instructive to apply and compare the com-
mon Metropolis criterion (13) and a version of Kawasaki crite-
rion (14, 15) for move acceptance. The former is simpler,
whereas the latter is more accurate for our purpose (see below).
As described in Methods, the probability for an attempted move
to be accepted is equal to min[1,exp(−βΔGQ)], where ΔGQ =
G(Q ± δQ) − G(Q), in the Metropolis algorithm; whereas the
probability is equal to A−1 exp(−βΔGQ/2), for some constant A,
in the Kawasaki algorithm. As will be shown below, the dynamics
that follows from the Metropolis algorithm are a good approxi-
mation of—although not equivalent to—a diffusive process
governed by the Smoluchowski equation. In contrast, the dy-
namics that follows from our Kawasaki algorithm are a discretized
version of a Smoluchowski process. Nevertheless, the results that
we obtained using the two different move acceptance algorithms
were extremely similar (Fig. S2).
The Kawasaki algorithm that we used for the present work cor-

responds to the γ = 0 case of equation 13 in ref. 15 (relevant dis-
cussions in pp. 29–32 of ref. 15). Before considering the detailed
derivation below to show that the Kawasaki algorithm is a dis-
cretized solution to the Smoluchowski equation with a constantD, it
is instructive to inspect the expression for discretized coordinate-
dependent diffusion coefficientDi+1/2 ≈ Δq2 Ri+1,i (Pi/Pi+1)

1/2 given
by equation 6 in SI Text of ref. 6, where Δq is the interval between
two consecutive discretized coordinate values qi and qi+1, Pi and
Pi+1 are equilibrium populations, and Ri+1,i is the rate coefficient
from i to i+ 1 (6). If we now substitute our Kawasaki expression for
Ri+1,i = A−1p± exp[−β(Gi+1 – Gi)/2] = A−1p±(Pi+1/Pi)

1/2 into the
above relationship for Di+1/2 (Gi is free energy at qi), we arrive at
a diffusion coefficient Di+1/2 ≈ Δq2 A−1 p± that is coordinate-in-
dependent. This correspondence is consistent with the relationD0≈
A−1 p± (δQ)2 to be shown below for our Kawasaki Monte Carlo
(MC) dynamics. It is noteworthy that a Kawasaki-like half-expo-
nential (square-root Boltzmann factor) form was also adopted for
the elements of the transition matrix in the “theoretical model” for
ultrafast protein folding in the work by Kubelka et al. (ref. 16,
equations S9 and S10) to describe hopping between adjacent re-
action coordinates.
Here, we have chosen A = exp(1/2) = 1.649 and accordingly,

excluded small regions of the model free energy profiles with
βΔGQ > 1 from Kawasaki MC simulations. Because these re-
gions (all with Q < QD) are energetically highly unfavorable to
begin with, adoption of a larger A to further limit the extent of
these forbidden regions is not expected to lead to appreciable
changes in the MC simulation results.
A total of 2,500–200,000 MC trajectories were simulated for

each protein using both the Metropolis and Kawasaki algo-
rithms. In all cases, we verified that the original free energy
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profile G(Q) was reproduced when simulation was performed
without an absorber at QN.

Metropolis and Kawasaki Algorithms as Discretized Approximate
Solutions to the Smoluchowski Equation. Consider the Smo-
luchowski equation (Eq. 1) for constant D0 (Eq. S1):

∂tpðQ;  tÞ=D0 ¼ ∂Q
�
exp½− βGðQÞ� ∂Qfexp½βGðQÞ�pðQ;  tÞg�

¼ β
�
∂2GðQÞ=∂Q2

�
pðQ;  tÞ

þ β½∂GðQÞ=∂Q� ½∂pðQ;  tÞ=∂Q�
þ�

∂2pðQ;  tÞ=∂Q2
�
: [S1]

ForMC simulations using discrete time steps on a free energy profile
defined by discrete values of Q with increment δQ ¼ 1=~Qn as spec-
ified in Methods, the differential quantities in the above equation
may be approximated by the following discretized expressions:

∂t pðQ;  tÞ≈ pðQ;  tþ 1Þ− pðQ; tÞ; [S2]

∂GðQÞ=∂Q ≈
� ½GðQþ δQÞ−GðQÞ�=ðδQÞ
½GðQÞ−GðQ− δQÞ�=ðδQÞ ;

[S3A]
[S3B]

∂pðQ; tÞ=∂Q≈
�½ pðQþ δQ; tÞ− pðQ; tÞ�=ðδQÞ
½ pðQ; tÞ− pðQ− δQ; tÞ�=ðδQÞ ;

[S4A]
[S4B]

∂2GðQÞ=∂Q2 ≈ ½GðQþ δQÞ þGðQ− δQÞ− 2GðQÞ�=ðδQÞ2; [S5]

∂2pðQ; tÞ=∂Q2 ≈ ½pðQþ δQ; tÞ þ pðQ− δQ; tÞ− 2pðQ; tÞ�=ðδQÞ2:
[S6]

Note that two equally reasonable discretized expressions are
provided by S3A and S3B for ∂G(Q)/∂Q and by S4A and S4B for
∂p(Q, t)/∂Q. We will exploit these alternative forms in the formal
development below.

Similarities and Differences Between Metropolis and Smoluchowski
Dynamics. It follows from the Metropolis criterion of
min[1,exp(−βΔGQ)] that, depending on the relative values ofG(Q –

δQ),G(Q), andG(Q+ δQ), four cases need to be considered sepa-
rately:

Case I: GðQþ δQÞ>GðQÞ and GðQ− δQÞ>GðQÞ.
Case II: GðQþ δQÞ>GðQÞ and GðQ− δQÞ≤GðQÞ.
Case III: GðQþ δQÞ≤GðQÞ and GðQ− δQÞ>GðQÞ.
Case IV: GðQþ δQÞ≤GðQÞ and GðQ− δQÞ≤GðQÞ:

For case I [i.e., GðQþ δQÞ>GðQÞ and GðQ− δQÞ>GðQÞ],
½ pðQ; t þ 1Þ− pðQ; tÞ�=p±¼ pðQ− δQ; tÞþ pðQþ δQ; tÞ

− pðQ; tÞfexpð− β½GðQþ δQÞ−GðQÞ�Þ
þ expð− β½GðQ− δQÞ−GðQÞ�Þg

≈ pðQ− δQ; tÞ þ pðQþ δQ; tÞ− 2pðQ; tÞ
þ βpðQ; tÞ½GðQþ δQÞ− 2GðQÞ þGðQ− δQÞ�

≈
��
∂2pðQ; tÞ=∂Q2

�þ βpðQ; tÞ�∂2GðQÞ=∂Q2
��ðδQÞ2;;

where the first equality follows from our Metropolis MC algo-
rithm (the rate of change of p(Q, t) with respect to time t is
a product of the overall left/right transition probability p± and
the min[1,exp(−βΔGQ)] criterion, hence, the 1/p± factor on the
left-hand side). The first ≈ entails approximating exp(x) by 1 + x,
which is valid for small x (the same applies to cases II–IV and the
Kawasaki MC case below), whereas the last step (second ≈ sign)
was reached by using expressions S5 and S6. Thus, for this case,

in which G(Q) is a local minimum, the Metropolis MC algorithm
accounts for two of three terms in the Smoluchowski equation in
Eq. S1 if D0 is identified with p± (δQ)2. However, the Metropolis
MC algorithm fails to account for the β[∂G(Q)/∂Q][∂p(Q, t)/∂Q]
term in the Smoluchowski equation.

For case II [i.e., GðQþ δQÞ>GðQÞ and GðQ− δQÞ≤GðQÞ],
½ pðQ; t  þ  1Þ− pðQ; tÞ�=p± ¼ pðQþ δQ; tÞ− pðQ; tÞ

− pðQ; tÞexpð− β½GðQþ δQÞ−GðQÞ�Þ
þ pðQ− δQ; tÞexpð− β½GðQÞ−GðQ− δQÞ�Þ

≈ pðQþ δQ; tÞ− 2pðQ; tÞ þ pðQ− δQ; tÞ
þ βpðQ; tÞ ½GðQþ δQÞ−GðQÞ�
− βpðQ− δQ; tÞ½GðQÞ−GðQ− δQÞ�

¼ pðQþ δQ; tÞ− 2pðQ; tÞ þ pðQ− δQ; tÞ
þ βpðQ; tÞ½GðQþ δQÞ− 2GðQÞ þGðQ− δQÞ�
þ β½pðQ; tÞ− pðQ− δQ; tÞ�½GðQÞ−GðQ− δQÞ�

≈
��
∂2pðQ; tÞ=∂Q2

�þ βpðQ; tÞ�∂2GðQÞ=∂Q2
�

þ β½∂GðQÞ=∂Q�½∂pðQ; tÞ=∂Q�gðδQÞ2;

where the last step was reached by using expressions S3B, S4B,
S5, and S6. The second equality in the above equation amounts
only to a rearrangement of terms. Thus, by comparing Eq. S1
with the approximate equality between the left-hand side and the
expression after the second ≈ sign in the above formulation, it is
clear that the Metropolis MC algorithm is a discretized version
of the Smoluchowski equation, with D0 = p± (δQ)2 for this case.

For case III [i.e., GðQþ δQÞ≤GðQÞ and GðQ− δQÞ>GðQÞ],
½pðQ; t  þ   1Þ− pðQ; tÞ�=p± ¼ pðQ− δQ; tÞ− pðQ; tÞ

− pðQ; tÞexpð− β½GðQ− δQÞ−GðQÞ�Þ
þ pðQþ δQ; tÞexpð− β½GðQÞ−GðQþ δQÞ�Þ

≈ pðQ− δQ; tÞ− 2pðQ; tÞ þ pðQþ δQ; tÞ
þ βpðQ; tÞ½GðQ− δQÞ−GðQÞ�
þ βpðQþ δQ; tÞ½GðQþ δQÞ−GðQÞ�

¼ pðQ− δQ; tÞ− 2pðQ; tÞ þ pðQþ δQ; tÞ
þ βpðQ; tÞ½GðQ− δQÞ− 2GðQÞ þGðQþ δQÞ�
þβ½pðQþ δQ; tÞ− pðQ; tÞ�½GðQþ δQÞ−GðQÞ�

≈
��
∂2pðQ; tÞ=∂Q2

�þ βpðQ; tÞ�∂2GðQÞ=∂Q2
�

þ β½∂GðQÞ=∂Q�½∂pðQ; tÞ=∂Q�gðδQÞ2;

where the last step was reached by using expressions S3A, S4A,
S5, and S6. The second equality amounts only to a rearrangement
of terms. Thus, similar to case II, the Metropolis MC algorithm
is seen as a discretized version of the Smoluchowski equation,
with D0 = p± (δQ)2 for this case as well.

For case IV [i.e., GðQþ δQÞ≤GðQÞ and GðQ− δQÞ≤GðQÞ],
½pðQ; t  þ 1Þ− pðQ; tÞ�=p± ¼ − 2pðQ; tÞ

þpðQ− δQ; tÞexpð− β½GðQÞ−GðQ− δQÞ�Þ
þ pðQþ δQ; tÞexpð− β½GðQÞ−GðQþ δQÞ�Þ

≈− 2pðQ; tÞ þ pðQ− δQ; tÞ þ pðQþ δQ; tÞ
− βpðQ− δQ; tÞ½GðQÞ−GðQ− δQÞ�
þ βpðQþ δQ; tÞ½GðQþ δQÞ−GðQÞ�

¼ − 2pðQ; tÞ þ pðQþ δQ; tÞ þ pðQ− δQ; tÞ
þ βpðQ; tÞ½GðQþ δQÞ− 2GðQÞ þGðQ− δQÞ�
þ β½pðQ; tÞ− pðQ− δQ; tÞ�½GðQÞ−GðQ− δQÞ�
þβ½pðQþ δQ; tÞ− pðQ; tÞ�½GðQþ δQÞ−GðQÞ�

≈
��
∂2pðQ; tÞ=∂Q2

�þ βpðQ; tÞ�∂2GðQÞ=∂Q2
�

þ 2β½∂GðQÞ=∂Q�½∂pðQ; tÞ=∂Q�gðδQÞ2;

where the last step was reached by using expressions S3–S6.
Again, the second equality amounts only to a rearrangement of
terms. Thus, for this case, in which G(Q) is a local maximum, if
D0 is identified with p± (δQ)2, the Metropolis MC algorithm
correctly accounts for two of three terms in Eq. S1 but affords
a coefficient to the β[∂G(Q)/∂Q][∂p(Q, t)/∂Q] term that is double
the coefficient in the Smoluchowski equation.
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Taken together, Metropolis MC describes a diffusion process
that is a discretized version of the process governed by the
Smoluchowski equation with D0 = p± (δQ)2 when G(Q) is not
a local minimum or a local maximum. Interestingly, the average
coefficient for the β[∂G(Q)/∂Q] [∂p(Q,−t)/∂Q] term in Metrop-
olis MC (zero for local minima and two for local maxima) is
equal to the coefficient in the Smoluchowski equation. Because
an overwhelming majority of the G(Q) values in the free energy
profiles that we considered is neither local minimum nor local
maximum, we expect Metropolis MC to provide a good approxi-
mation to diffusive dynamics. Moreover, when G(Q) is a local
minimum or local maximum (in a discrete sense), the ∂G(Q)/
∂Q value is expected to be ≈0, and thus, the errors incurred by
using Metropolis MC to model diffusive dynamics should not be
significant, because the error terms are proportional to ∂G(Q)/
∂Q. Consistent with this expectation, for all except one of our
model proteins, the Metropolis MC-simulated mean first passage
times (MFPTs) with p± = 0.45 entail effective D0 ≈ 0.44–0.48 [in
units of (δQ)2] when compared against the analytical formula for
MFPT derived from Eq. 1 (Fig. S2). All results from Metropolis
MC simulations shown in this work were obtained using p±= 0.45.

Correspondence Between Kawasaki and Smoluchowski Dynamics.
According to our Kawasaki algorithm,

Again, the first equality follows from the Kawasaki criterion itself,
whereas the last step was reached by using expressions S3–S6.
Thus, within the approximations represented by the ≈ signs de-
scribed above, Kawasaki MC dynamics are a discretized version
of a diffusion process described by the Smoluchowski equation
with D0 = A−1p± (δQ)2. We used p± = 0.5 for our Kawasaki MC
simulations.

Similarities and Differences Between Conformations Sampled by the
Explicit-Chain Folding and Unfolding Trajectories in the Barrier
Region. To assess the applicability of the common transition
state theory (TST)-inspired notion that the transition states en-
countered in stopped-flow folding and unfolding are identical for
two-state proteins (17, 18), we have compared the contact pattern
of the conformations in the barrier region sampled along folding
paths (FPs) with those patterns sampled in equilibrium simulations
that include both folding and unfolding trajectories (Fig. S7A).
The results show that FP and equilibrium contact patterns at Q‡

can be significantly different (except for models 1BDDand 1HYW
in Fig. S7A), indicating that conformations traversed during
stopped-flow folding and unfolding are not statistically identical
for these model proteins. Interestingly, folding and unfolding ki-
netics seem to bemore symmetric for the two fastest foldingmodel
proteins 1BDD and 1HYW, because they exhibit close to zero
differences at Q‡.
It is important to note that the observation in Fig. S7A does not

violate time reversal symmetry, which is a fundamental tenet in
classical physics and applies to our model Langevin dynamics (ref.
19 directly verifies this principle in a Langevin dynamics simulation

of translocation times for particles traversing membrane chan-
nels). Although every forward path is matched to an equally likely
reverse path (e.g., the paths A-B-C and C-B-A in Fig. S7B) as
required by time reversal symmetry, part of a stopped-flow folding
path (blue path from A to B in Fig. S7B) may not be counted
(measured) as part of a stopped-flow unfolding path. In the ex-
ample in Fig. S7B, the dashed red path from B to A is not part of
a stopped-flow unfolding path. (Schematic drawings similar to
those drawings in Fig. S7 have been used in ref. 20.) This is because
both A-B-C and C-B-A in Fig. S7B recrossQD, which serves as the
starting point for folding paths and the finish line for unfolding
paths. Aiming to capture the essential feature of stopped-flow
measurements, our definition of folding and unfolding paths al-
lows the paths to recross their respective starting points atQD and
QN, but the path is considered to be completed when it first crosses
the finish line at QN and QD, respectively (i.e., the folding and
unfolding paths do not recross their respective finish line). If part
of the folding (or unfolding) path that is not counted to the reverse
unfolding (or folding) path also recrosses Q‡ in the transition re-
gion (as for the A-B part of the folding path A-B-C in Fig. S7B), it
is possible that the transition-state conformations sampled by
folding and unfolding paths are different, which is exemplified by
our explicit-chain simulation data in Fig. S7A.

Another manifestation of the asymmetry between folding and
unfolding is the ensemble of conformations in the transition region
last visited by a folding transition path vs. those conformations last
visited by an unfolding transition path. These conformations are of
intuitive interest, because they may play a comparatively more
important role in taking the protein over the mountain top to fa-
cilitate folding or unfolding than other conformations in the
transition region. Because all folding transition paths start at QD
and end at QN without recrossing QD and all unfolding transition
paths start at QN and end at QD without recrossing QN, time re-
versal symmetry requires that each folding transition path (e.g.,
blue path from D to E in Fig. S7B) is matched to an equally likely
reverse unfolding transition path (e.g., red path fromE toD in Fig.
S7B). If these transition paths recross Q‡, however, the Q‡ con-
figuration last visited by the folding transition path (e.g., v in Fig.
S7B) can be different from the Q‡ configuration last visited by the
unfolding transition path (e.g., iv in Fig. S7B). For all eight model
proteins in the present study, we found appreciable differences
between the contact patterns of folding and unfolding trajectories
when they last visited Q‡ (Fig. S7C), indicating that there is sig-
nificant recrossing of the barrier region.
Since the early experiments on ribonuclease A (21), it has long

been known that conformations sampled along stopped-flow
folding and unfolding pathways can be different. Although it has
been argued that reversibility of stopped-flow folding and un-
folding trajectories applies to some proteins, such as chymotrypsin
inhibitor 2, within experimental and computational uncertainties
(18, 22), such behavior is not universal. A more recent example is
single-chain monellin. Experiment showed that its kinetics of

½ pðQ; t  þ 1Þ− pðQ; tÞ�=A−1p± ¼− pðQ; tÞfexpð− β½GðQþ δQÞ−GðQÞ�=2Þ þ expð− β½GðQ− δQÞ−GðQÞ�=2Þg
þ pðQþ δQ; tÞexpð− β½GðQÞ−GðQþ δQÞ�=2Þ þ pðQ− δQ; tÞexpð− β½GðQÞ−GðQ− δQÞ�=2Þ

≈− 2pðQ; tÞ þ pðQþ δQ; tÞ þ pðQ− δQ; tÞ þ βpðQ; tÞ½GðQþ δQÞ− 2GðQÞ þGðQ− δQÞ�=2
− βpðQþ δQ; tÞ½GðQÞ−GðQþ δQÞ�=2− βpðQ− δQ; tÞ½GðQÞ−GðQ− δQÞ�=2

¼− 2pðQ; tÞ þ pðQþ δQ; tÞ þ pðQ− δQ; tÞ þ βpðQ; tÞ½GðQþ δQÞ− 2GðQÞ þGðQ− δQÞ�
þ β½pðQþ δQ; tÞ− pðQ; tÞ�½GðQþ δQÞ−GðQÞ�=2þ β½pðQ; tÞ− pðQ− δQ; tÞ�½GðQÞ−GðQ− δQÞ�=2

≈
��
∂2pðQ; tÞ=∂Q2

�þ βpðQ; tÞ�∂2GðQÞ=∂Q2
�þ β½∂GðQÞ=∂Q�½∂pðQ; tÞ=∂Q�gðδQÞ2:
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unfolding is less complex than the kinetics of folding (23).
One possible origin of such asymmetry between folding and
unfolding is kinetic trapping caused by nonnative interactions
during folding (15, 24, 25). In this regard, it is noteworthy that
Fig. S7 A and C indicates that asymmetry between stopped-flow

folding and unfolding kinetics can also arise in native-centric
models in the absence of favorable nonnative interactions.
These results show that kinetic subtleties in protein folding be-
yond common notions inspired by 1D TST can readily emerge in
explicit-chain dynamics.
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Fig. S1. Evaluating the preequilibrium idea. (A) The preequilibrium assumption is illustrated by a hypothetical free energy profile along a reaction coordinate
for folding; here D, ‡, and N denote, respectively, the denatured (unfolded), transition, and native (folded) states of the protein. In the common TST-inspired
interpretation of stopped-flow folding kinetics data, a complete overlap between the thermodynamic free energy profile (black curve) and a profile of the
nonequilibrium population during the transient folding process (−lnPFP; red curve) is assumed for the entire unfolded (D) regime up to the peak of the free
energy profile at ‡. The dotted red curve underscores that TST for folding provides no prediction for −lnPFP between ‡ and N. (B) Simulated thermodynamic
and kinetic profiles of model 2CI2. The black thermodynamic profile (marked as “equilibrium” and seen here as overlapping with other profiles plotted in
other colors) and the thin blue and red curves (marked as “folding kinetics”) are equivalent, respectively, to the −lnPeq(Q) + c, −lnPFP(Q), and −lnPFPjs(Q)
explicit-chain simulated profiles in Fig. 2A (plotted in the same color). The only difference is that the shift (c = −0.30) to highlight conformity to a folding
preequilibrium is now applied to the kinetic profiles, and therefore, the black, blue, and red profiles here are, respectively, −lnPeq(Q), −lnPFP(Q) − c, and
−lnPFPjs(Q) − c. In the present plot, the magenta curve is the ensemble unfolding path profile −lnPUFP(Q) − c′, and the gray curve is the single-molecule un-
folding path profile −lnPUFPjs(Q) − c′ of the same model 2CI2 (c′ = −1.38). These profiles, marked as “unfolding kinetics”, are analogous, respectively, to the
−lnPFP(Q) − c and −lnPFPjs(Q) − c profiles; the only difference is that the −lnPUFP(Q) − c′ and −lnPUFPjs(Q) − c′ profiles are defined by unfolding trajectories
instead of folding trajectories, with c′ introduced to highlight conformity to an unfolding preequilibrium. The green profile is the combination, −ln[PFP(Q) +
PUFP(Q)], of the ensemble folding path and unfolding path kinetic profiles (no shift). The green profile overlaps almost perfectly, which it should, with the
−lnPeq(Q) profile (no shift) obtained from thermodynamic simulations. (C) Thermodynamic and kinetic FP profiles of the other seven model proteins that we
studied. Results are equivalent to the results in Fig. 2A but without the nonexplicit-chain MC and analytically derived data. The simulated equilibrium free energy
profile −lnPeq(Q) + c and the kinetic −lnPFP(Q) and −lnPFPjs(Q) profiles are shown, respectively, by the black curve and the thin blue and red curves. A value for c is
chosen for each model protein to allow the thermodynamic and kinetic profiles to coincide around QD so as to highlight the extent of preequilibration. Here, c =
−0.30, −0.24, −0.45, −0.18, −0.48, −0.19, and −0.6, respectively, for 1CQU, 1IMQ, 1BDD, 3GB1, 1SHF, 1CSP, and 1HYW.
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Fig. S2. Nonexplicit-chain constant-D0 diffusion provides a good rationalization for general trends in the explicit-chain simulation data. (A) An excellent
correlation is observed between ln(MFPT) from explicit-chain simulations (horizontal axis) and ln(MFPT)D0 from nonexplicit-chain MC simulations using
the Metropolis algorithm (vertical axis). The MFPT values are provided in Table S2. The line through the data points is the least-squares fit with slope = 1.01
and r = 0.997. Each (MFPT)D0 value was averaged from 2,500–200,000 MC trajectories using an equal probability p± = 0.45 for attempting either a Q → Q + δQ
or a Q → Q − δQ transition at every MC time step. A near-perfect agreement that covers ∼3.3 orders of magnitude is seen between our MC simulation and
explicit-chain dynamics with respect to the folding rates. From the MC-simulated (MFPT)D0 values, we define an effective diffusion coefficient
Deff ¼

PQN
Q¼QD

PeqðQÞ−1 PQ
Q′¼0 PeqðQ′Þ=ðMFPTÞD0 by using the theoretical expression in Eq. 5 for (MFPT)D0. Note that the above expression for Deff is in units of

(δQ)2. Consistent with expectation (in the text), we found that Deff ≈ p± = 0.45. For the eight proteins studied (in the same order as listed in Table S1), Deff =
0.45, 0.45, 0.43, 0.44, 0.44, 0.44, 0.48, and 0.39, respectively. (B and C) Excellent correlation is seen between the values computed using Metropolis and Ka-
wasaki MC algorithms for the logarithmic MFPT (B; r = 0.99998) and the logarithmic ‹tTP› (C; r = 0.99975). (D) Distribution of tTP for the eight model proteins
that we studied. In each panel, the continuous distribution curve was fitted to the red data points from explicit-chain Langevin dynamics simulations, which is
shown in Fig. 2C. Also included here are blue and green data points obtained from nonexplicit-chain (MC) simulations using the Metropolis and Kawasaki
algorithms, respectively. To facilitate comparison, the MC results are shown here in time units that were set by requiring the average MC tTP to be equal to the
‹tTP› from explicit-chain simulations [e.g., for 2CI2, the plotted Metropolis MC-simulated tTP value is ‹tTP›/‹tTP›D0 = 39.2 times the number of Metropolis MC steps;
the corresponding factors for other model proteins are given by their respective ‹tTP›/‹tTP›D0 values in Table S2]. The results show that the three tTP distributions
are very similar. It should be noted that the general form of the continuous distribution curves P(tTP) = Bfexp(−f tTP) exp[−Bexp(−f tTP)]/[1 − exp(−B)] that we
used to fit simulation data here and in Fig. 2C was derived in the work by Malinin and Chernyak (1) using idealized potential functions that are similar but not
identical to the free energy profiles in our explicit-chain protein models. In this formula, B = βG, where G is the quantity defined in the work by Malinin and
Chernyak (1) and should not be confused with the free energy used elsewhere in the present paper and f is the quantity k in the same reference. The fitting
parameters for the eight model proteins are (listed in the order as in Table S1) B = 7.7, 5.9, 7.9, 6.4, 7.6, 7.6, 5.7, and 7.1 and f = 4.1, 9.0, 4.7, 13.6, 7.5, 3.1, 3.1,
and 8.3. We found no clear correspondence between the fitting parameters for the continuous curve and features (such as curvature) in our simulated free
energy profiles.

1. Malinin SV, Chernyak VY (2010) Transition times in the low-noise limit of stochastic dynamics. J Chem Phys 132(1):014504.
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Legend continued on following page

A

B

Fig. S4. Additional illustrations of the atypical nature of transition paths (TPs) among the folding trajectories in the quasi-preequilibrium. Results shown are
for model 2CI2. (A, Left) Contact probabilities (Pc) of selected secondary structure elements along TPs (black data points) are compared with the corresponding
probabilities along FPs (color data points). Each data point in Left was averaged from more than 400 sampled conformations. (A, Right) Residue numbers i,j are
represented by the horizontal and vertical axes of the contact map. The native contacts of 2CI2 considered in Left are shown in color; the other native contacts
are shown in black. The ribbon diagram (Right) is the 2CI2 native structure. In the contact map, contacts marked by red, green, and magenta denote, re-
spectively, the contacts in an α-helix (α; shown in red in the ribbon diagram), a parallel β-sheet (β1; formed by the green and blue strands in the ribbon di-
agram), and an antiparallel β-sheet (β2; formed by the magenta and blue strands in the ribbon diagram). From Left, the TPs (black data points) are seen to have
a smoother increases in Pc as Q increases (and a better approximation to a monotonic increase) vis-à-vis the corresponding variations of Pc with Q along FPs
(color data points). (B) Comparing a folding transition path with a nontransition trajectory in the unfolded (denatured) basin. Selected 2CI2 conformations with
the given Q values (0.3, 0.4, and 0.55) (compare with Fig. 4) along a TP (Upper) and a nontransition trajectory (non-TP; Lower) are each depicted as a Cα trace
colored from blue (N terminus) to red (C terminus). The black arrows between conformations indicate time progression. Every TP in our 2CI2 model starts from
the unfolded (denatured) minimum of the free energy profile at Q = QD ≈ 0.12 and ends at the native state at Q = QN = 1 without revisiting QD. In contrast,
a non-TP starting at QD cannot reach QN unless it revisits QD at least one time. To contrast the different patterns of contact development between this
particular pair of TP and non-TP trajectories, all 14 contacts in the Q = 0.55 TP conformation that are not in the Q = 0.55 non-TP conformation are marked by
connecting lines between Cα positions in the Q = 0.55 TP conformation. (Each of the Q = 0.55 conformations has a total of 72 native contacts.) Some of these
contacts already exist in the earlier Q = 0.3 and Q = 0.4 TP conformations along the TP trajectory; those contacts are marked in the Q = 0.3 and Q = 0.4 TP
conformations as well. Likewise, all 14 contacts in the Q = 0.55 non-TP conformation that are not in the Q = 0.55 TP conformation are marked in the Q = 0.55
non-TP conformation. Accordingly, subsets of these contacts that exist in the first Q = 0.3 and the first Q = 0.4 non-TP conformations (forward branch of the
non-TP) are marked. The contacts indicated by the small red and blue arrows along the TP are, respectively, between residues 34 and 50 and between residues
24 and 63. The contact between 34 and 50 is in the β1 parallel β-sheet structure (contact map in A). The early formation and persistence of this contact is in line
with the higher average population of β1 in TP than in non-TP (A,Middle Left). The contact between 24 and 63 has a high contact order (= 63–24 = 39). Bringing
the helix and the last β-strand at the C terminus into proximity, this contact helps restrict conformation freedom and facilitate folding. In contrast, the highest
contact order among those contacts in the shown Q = 0.55 non-TP conformation that do not exist in the TP conformation with the same Q is only equal to 23
(between residues 40 and 63). These observations may point to a rationalization for the preference for structures with higher contact order at early stages of
TP relative to non-TP structures with the same Q. For our model 2CI2, the average contact order values for TPs and non-TPs at Q = 0.3, 0.4, and 0.55 are ‹COTP› =
0.0470, 0.0733, and 0.116, respectively, and ‹COFP› = 0.0423, 0.0707, and 0.116, respectively. The TP conformations shown here may be considered to be
representative in that their COTP values are 0.0470, 0.0774, and 0.118, respectively, which are very similar to the corresponding ‹COTP› values. Likewise, the COFP

values for the non-TP conformations shown here in the forward (backward) branch are 0.0421 (0.0383), 0.0701 (0.0686), and 0.115, respectively, which are also
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quite similar to the corresponding ‹COFP› values for Q = 0.3, 0.4, and 0.55, respectively. Nonetheless, it should be emphasized that the TP and non-TP shown
here are only two examples chosen among many trajectories that we simulated. Our simulation data showed that the development of contact pattern along
individual TPs can be very different. The development of contact pattern along individual non-TPs can differ a lot as well. For instance, although on average,
the Pc(α) of TPs is lower than the Pc(α) of non-TPs at Q = 0.3 (A Upper Left), for the Q = 0.3 TP and non-TP conformations shown here, the former has a higher
helical content than the latter (0.636 and 0.545 of native, respectively). Thus, the different behavioral trends of TPs and non-TPs observed in Figs. 3 and 4 and A
are the results of averaging over ensembles of highly diverse trajectories, a comprehensive analysis of which is beyond the scope of this work. Future effort is
needed to gain deeper insight into how TPs differ from non-TPs.
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Fig. S5. Comparing TP and FP contact patterns. For each protein, the deviations PTP,ij(Q) – PFP,ij(Q) of the TP native contact probabilities from the FP native
contact probabilities are provided by the upper left contact map, whereas the PFP,ij(Q) values are provided by the lower right contact map. As for Fig.4, the
contact probability or difference in contact probabilities for residue pair i,j in this figure and Fig. S7 is depicted by a small square at position i,j that is color-
coded in accordance with the color scale on the right. Results shown in this figure for each protein are for the Q value at which the largest differences between
TPs and FPs for the given protein are exhibited in Fig. 3. The Q values for A–G are, respectively, 0.3, 0.65, 0.52, 0.62, 0.20, 0.51, and 0.40. Similar to the 2CI2 in
Fig. 4, the model proteins studied in this figure show a disfavoring of early formation of local contacts in TPs relative to a typical FP trajectory in the pre-
equilibrium. All helical contact patterns are disfavored along TPs. Moreover, the low-CO β-structure near the C terminus of 1CSP involving residues 46–65 is
clearly disfavored along the TPs of this model proteins. Nonetheless, more subtle behaviors are also observed with some low-CO β-structures disfavored while
other low-CO β-structures are favored by TPs (e.g., 1SHF).
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Fig. S6. Scatter plot of FPT with residence time t(Q‡) of folding trajectories (FPs) at Q‡ (Left), residence time at Q‡ and its two neighboring Q values [i.e., t(Q‡ −
δQ) + t(Q‡) + t(Q‡ + δQ); Center], and residence time at Q‡ and its four neighboringQ values [i.e., t(Q‡ − 2δQ) + t(Q‡ − δQ) + t(Q‡) + t(Q‡ + δQ) + t(Q‡ + 2δQ); Right].
The distributions are essentially random. For each of the model proteins studied, the SD of t(Q‡) is approximately equal to the mean value ‹t(Q‡)›.
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Fig. S7. Symmetry and asymmetry between folding and unfolding kinetics. (A) FP and thermodynamic contact patterns can differ at the folding barrier. For
each protein, the upper left contact map shows the differences, PFP,ij(Q

‡) – Peq,ij(Q
‡), in native contact probabilities sampled by folding trajectories and

equilibrium folding/unfolding trajectories at the thermodynamic free energy barrier Q‡. The lower right map shows the Peq,ij(Q
‡) values obtained by equi-

librium sampling of >1,000 conformations at Q‡ for each protein. The mean square deviation
P

i;j ½PFP;ijðQ‡Þ−Peq;ijðQ‡Þ�2=~Qn ¼ 0:0109; 0:0115; 0:0058;
0:0001; 0:0054; 0:0236; 0:0209; and 0:0003, respectively, for 2CI2, 1CQU, 1IMQ, 1BDD, 3GB1, 1SHF, 1CSP, and 1HYW. (B) Schematics of folding and un-
folding trajectories. The folding trajectories are shown in blue, and their exact reverse trajectories are shown in red, with a small offset for clarity. A-B-C (blue)
is an example folding path that starts at QD and ends at QN. It passes through Q‡ three times (i, ii, and iii). Time reversal symmetry implies that the reverse
trajectory C-B-A exists with equal probability. However, only the C-B part of this trajectory (solid red curve) that passes through Q‡ one time (at iii) contributes
to an unfolding path, because QD is reached by the red path at B. In other words, the dotted red curve from B to A does not contribute to an unfolding path. It
follows that the conformations sampled by folding and unfolding paths at Q‡ can be different. D-E is an example folding transition path. Its exact reverse, E-D,
is an unfolding transition path. This example shows that the conformations sampled by the folding and unfolding transition paths at their respective last visit
of Q‡ can be different (v for folding and iv for unfolding). This possibility is illustrated in C. For each model protein in C, the upper left map shows the dif-
ference in contact probabilities between simulated folding and unfolding trajectories when the model protein last visited Q‡ (peak of the equilibrium free
energy profile) before it is fully folded (for folding trajectories) or fully unfolded (for unfolding trajectories). The plotted differences in the upper left maps are
such contact probabilities of the folding trajectories minus the corresponding contact probabilities of the unfolding trajectories, whereas the sums of these
folding and unfolding contact probabilities are provided by the lower right maps.
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Table S1. Proteins modeled in the present study

Protein
Protein Data Bank ID code

(residues range) n Q̃n

No. of folding
trajectories ‹t(Q‡)›

Chymotrypsin inhibitor 2 2CI2 (20–83) 64 131 1,451 498.8
N-terminal domain of the ribosomal protein L9 1CQU (1–56) 56 107 1,600 662.0
Colicin E9 immunity protein IM9 1IMQ (1–86) 86 164 2,020 755.3
B domain of protein A 1BDD (1–60) 60 84 1,200 889.1
B1 domain of protein G 3GB1 (1–56) 56 103 1,600 444.4
Fyn SH3 domain 1SHF (84–142) 59 129 1,440 893.7
Cold shock protein 1CSP (1–67) 67 141 1,404 562.4
Bacteriophage λ-protein W 1HYW (1–58) 58 96 1,500 1,125.1

For each protein, the number of residues n, the number of native contacts Q̃n, the number of folding trajectories (FPs) simulated using our explicit-chain
model, and the average residence time ‹t(Q‡)› among the FPs at the putative transition state are tabulated [Q‡ is the peak of −lnPeq(Q)].

Table S2. Barrier heights and folding times in the explicit-chain Langevin dynamics model and the nonexplicit-chain
Metropolis MC model with an effective coordinate-independent diffusion coefficient D0

Protein Data
Bank ID code ΔG‡/kBT MFPT (MFPT)D0 ‹tTP› ‹tTP›D0 ‹t(Q‡)›D0 MFPT/(MFPT)D0 ‹tTP›/‹tTP›D0 ‹t(Q‡)›/‹t(Q‡)›D0

2CI2 7.75 7.4048e7 2.172e6 6.47e4 1,649.4 18.1 34.0921 39.2264 27.558
1CQU 5.25 4.7539e6 1.855e5 2.62e4 837.9 30.9 25.6275 31.2686 21.4239
1IMQ 6.82 4.3563e7 9.194e5 5.68e4 1,761.3 22.2 47.382 32.2489 34.0225
1BDD 2.40 3.8971e5 8.261e3 1.83e4 471.3 25.1 47.1747 38.8288 35.4223
3GB1 6.70 2.6970e7 7.829e5 3.57e4 940.2 21.0 34.4488 37.9706 21.1619
1SHF 8.10 8.0551e7 2.323e6 8.79e4 1,840.9 21.7 34.6754 47.7484 41.1843
1CSP 10.27 9.0674e8 2.346e7 7.84e4 1,695.6 17.0 38.6505 46.2373 33.0824
1HYW 2.07 4.1964e5 1.059e4 3.10e4 867.1 30.8 39.6261 35.7514 36.5292

Times are given, respectively, in Langevin time steps and number of attempted MC moves. Note that the average residence time
‹t(Q‡)› among the FPs at Q‡ in the explicit-chain model is provided in Table S1; ‹t(Q‡)›D0 is the corresponding average residence time in
the nonexplicit-chain Metropolis MC model. Otherwise, the notation is the same as the notation in the text. The ratios listed in columns
8–10 compare the time scales in the two classes of models. The ratios are quite stable (ranging from 21.2 to 47.7) in that they do not
exhibit significant variations among different model proteins. The MFPT/(MFPT)D0, ‹tTP›/‹tTP›D0, and ‹t(Q‡)›/‹t(Q‡)›D0 ratios averaged
over the eight model proteins are, respectively, 37.7, 38.7, and 31.3. These average ratios may be used as conversion factors between
the Langevin and Metropolis MC time units in the present study. To facilitate comparison between the average transition path times
obtained from the two classes of models, the ‹tTP›D0 values plotted in Fig. 2B are scaled by a factor that is equal to the average value
of ‹tTP›/‹tTP›D0 × 10−4. In other words, each of the ‹tTP›D0 values plotted in Fig. 2B is 0.00387 times the corresponding ‹tTP›D0 value in
this table.
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