Supporting Information

Dupire et al. 10.1073/pnas.1210236109

Movie S1. Evolution of the orientation of a red blood cell (RBC) with an increasing shear rate. In the movie, "s-1" stands for the shear rate dimension, $[s^{-1}]$. For each movie part, shear rate is equal, respectively, to 2 s⁻¹, 4 s⁻¹, 6 s⁻¹, 8 s⁻¹, 10 s⁻¹, and 12 s⁻¹. The movie corresponds to the sequences in Fig. 1*B*.

Movie S1

Movie 52. Tank-treading RBC with the rotation of a bead stuck to the membrane. Images in differential interference microscopy. In the movie, "s-1" stands for the shear rate dimension, $[s^{-1}]$. Shear rate is equal to 3 s^{-1} . The movie corresponds to the sequences in Fig. 3A.

Movie S2

Movie S3. Rolling-to-tank-treading transition. Images are in phase contrast. In the movie, "s-1" stands for the shear rate dimension, $[s^{-1}]$. Shear rate is equal to 3 s⁻¹. The movie corresponds to the sequences in Fig. 4A.

Movie S3

Movie S4. Tank-treading on a non-fully fluidized RBC, displaying knizocytal shape. Images are from differential interference microscopy. In the movie, "s-1" stands for the shear rate dimension, $[s^{-1}]$. Shear rate is equal to 6 s^{-1} . The movie corresponds to the sequences in Fig. 4B.

Movie S4

TAS PNAS