
Supplementary Figure, Tables and Note for:

Mutations in GNAL cause primary torsion dystonia

Tania Fuchs¹, Rachel Saunders-Pullman^{2,3}, Ikuo Masuho⁴, Marta San Luciano⁵, Deborah Raymond², Stewart Factor⁶, Anthony E. Lang⁷, Tsao-Wei Liang⁸, Richard M. Trosch⁹, Sierra White¹, Edmond Ainehsazan¹, Denis Herve^{10,11,12}, Nutan Sharma¹³, Michelle E. Ehrlich^{14,15}, Kirill A. Martemyanov⁴, Susan B. Bressman^{2.3}, Laurie J. Ozelius^{1,14}

¹ Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, NY; ² Department of Neurology, Beth Israel Medical Center, New York, NY; ³ Department of Neurology, Albert Einstein College of Medicine, Bronx, NY; ⁴ Department of Neuroscience, The Scripps Research Institute, Jupiter, FL; ⁵ Department of Neurology, University of California, San Francisco, CA; ⁶ Department of Neurology, Emory University School of Medicine, Atlanta, GA; ⁷ Division of Neurology, Toronto Western Hospital, Toronto, Canada; ⁸ Department of Neurology, Jefferson Hospital for Neuroscience, Philadelphia, PA; ⁹ Parkinson's and Movement Disorders Center, Southfield, MI; ¹⁰ Inserm UMR-S 839, F-75005 Paris, France; ¹¹ Institut du Fer a Moulin, F-75005 Paris, France; ¹² Universite Pierre et Marie Curie, F-75005 Paris, France; ¹³ Department of Neurology, Massachusetts General Hospital, Boston, MA; ¹⁴ Department of Neurology, Mount Sinai School of Medicine, New York, NY; ¹⁵ Department of Pediatrics, Mount Sinai School of Medicine, New York, NY; ¹⁵ Department of Pediatrics, Mount Sinai School of Medicine, New York, NY; ¹⁵ Department of Pediatrics, Mount Sinai School of Medicine, New York, NY; ¹⁵ Department of Pediatrics, Mount Sinai School of Medicine, New York, NY; ¹⁵ Department of Pediatrics, Mount Sinai School of Medicine, New York, NY

Figure 1

Supplementary Figure 1. Pedigrees of families with *GNAL* mutations. Filled in black symbols represent affected individuals, filled in grey symbols represent affected, known by history, diamond symbols with numbers represent additional sibs. WT indicates no mutation. Asterisks indicate the samples that were exome sequenced. Mutation status is indicated below the symbols for individuals whose DNA was available for testing. The pedigrees have been modified to protect the identities of the families.

Supplementary Table 1. Sites Involved for 28 GNAL Patients from 8 Families.

	upper face	lower face	neck	larynx	pharynx	tongue	jaw	right arm	left arm	right leg	left leg	trunk	Dystonia distribution	Site of onset
FAMILY D1* 1 2 3 4^ 5 6	•	•	•	•		•	•	•	•	•	•	•	S S S S S S S S S	Neck Neck,Larynx,Trunk Neck Legs Neck Neck
7 FAMILY P * 1 2 3 4^ 5 6	•	•	•			<u> </u>	<u> </u>	•	•	•	•	•	S F G F G S F	Neck, Face Neck Neck Neck Leg Neck Neck
FAMILY S* 1^ 2 FAMILY D2		•	•				•						F S	Neck Neck
1 2^ 3 <u>4</u> <i>FAMILY H</i>	•	•	•	•	•	• •	•	•	•			•	S S F	Neck Jaw Neck Tongue
1 2^ <u>3</u> FAMILY B			•										F F F	Neck Neck Neck
1 2^ FAMILY T 1^ 2			•	•				•					F S F F	Neck Neck Neck Neck
3 FAMILY N 1^		•	•	•			•						S F	Larynx Neck

SITES INVOLVED

Dystonia distribution: F – focal, S – segmental, M – multifocal, G – generalized ^ Denoted probands

* reported previously and updated here: Fam D1 in^{13,14,60}, Fam P in¹⁴ and¹⁵, Fam S in⁶¹. The following are the corresponding identifiers from¹³ for the individuals in D1: 1=individual 207, 2=302, 3=307, 4=304, 5=317, 6=315, 7=403.

Family P Variants			Shared Novel HZ against		Annotation				
113	10831	10835		dbSNP132	MS	NS	UTRs	Others	
57,663	56,435	58,354	11,124	458	68	1	13	376	

Supplementary Table 2. Single Nucleotide Variants indentified in Exome Sequencing.

	Family D1	I Variants		Shared Novel HZ against		Annotation			
10081	10097	10547	11484		dbSNP132	MS	NS	UTRs	Others
57,185	59,975	62,412	58,148	4,578	208	20	0	6	182

Supplementary Table 3. Indels identified in Family 1 exome sequencing.

Γ	Family	P Indel Va	ariants	Shared Novel		In coding regions		
	113	10831	10835	HZ	against dbSNP132			
	11,861	11,535	13,207	5,482	1,644	79		

Supplementary Table 4. Summary of Clinical features in *GNAL* mutation carriers.

	Mutation positive (n=28)
Women (n,%)	14 (50%)
Mean age of onset ¹ (years ±SD, range)	31.32± 12.39(7-54)
Mean age at final exam (years ±SD, range)	49.28 ± 13.30 (19-75)
Site of onset	
Arm	0 (0%)
Leg	2 (7.14%)

5 (17.86%)
0 (17.0070)
1 (3.57%)
2 (7.14%)
2 (7.14%)
23 (82.14%)
9 (32.14%)
3 (10.71%)
16 (57.14%)
13 (48.15%)
10 (35.71%)
5 (17.86%)
26 (92.86%)
12 (44.44%)

¹Unratable facial, speech and final distribution in 1 *GNAL* carrier

Supplementary Table 5. Primers used in GNAL exon amplification.

Exon	Forward Primer	Reverse Primer	Annealing Temp.
NM_182978_5UTR	GGCTCAGACGGCATTATTTACGGT	TCTCCTTCGGCTTGTCTGCTTT	59
NM_182978_ex1	ATGGGTCTGTGCTACAGTCTGC	AGAATCAGCCCGTAGTGTCCTC	59
NM_001142339_5UTR	AGAAGCTGAGCAGAACAAAGGC	AATAGAGAGTTGGAGACGTGTGCG	58
NM_001142339_ex1-2	AAACGCCTGCTCTGAATCGGAA	ACRTCTGGGAGAGAGACGAAGTTT	59
ex3-4	AACCTTTGCRGATGTCTTGG	CCTCTTATGCATTTAGAGAGCTGG	55
ex5	TCACACTAAACATAGAGTSGGTGCAT	TTATTCATTCCTTGCACTCAAG	57
ex6	ACTCACTTCAGCTTCTTGGCCT	ATGACCAATCCACRCACACACA	59
ex7	ATGCTCGGCCAATGTTGGTT	TGGGCCATGCAGCTCTTAACAA	58
ex8	ATGTGTGAACGCTGGAACCT	GCAGTGCTGAGTGTTAGAATTCAC	56
ex9	TGCAGGCTGKTCTGTGACT	AGAGATACTTCGTACGGTTCTGG	56
ex10	ACAGATGGAATGAGGATACTGGTG	GGGATCCKATTACAAATAGGACCTTG	56
ex11	GCTGGGAATATACAGCAGTCTAACR	TGAAGTCTAGCCCATCCAAG	57
ex12	TGCATTGAGACCATTCCTGCCT	GGGAGGCYGTATTCAATGACAACA	59

Supplementary Note:

Human research subjects were recruited through advertisement or referral from movement disorder physicians. All families chosen for the study were multiplex of Northern European ancestry. All study subjects gave informed consent prior to participation, and the study was approved by all institutional review boards. Videotaped examinations and determination of affected status was undertaken as previously published¹¹.

11. Bressman, S.B. et al. Idiopathic dystonia among Ashkenazi Jews: evidence for autosomal dominant inheritance. Ann Neurol 26, 612-20 (1989).