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Web Appendix A. Summary of the Data from the

Physician Reliability Study

As a summary of the data from the PRS, we present the scatterplot of IE’s ratings (in sum)

versus R-OB/GYNs ratings (in sum) in Figure S.1.

Web Appendix B. Maximum likelihood estimation: a

Monte-Carlo EM algorithm

We consider a Monte-Carlo EM (MCEM) algorithm (McCulloch, 1997; Booth and Hobert,

1999) to obtain the maximum likelihood estimation in Equation (6) in the article as fol-

lows. The maximum likelihood estimation of Equation (3) in the article can be simi-

larly derived. We treat the latent true disease status D = (D1, · · · , DI)
′, random effects
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Figure S.1: Subject-wise scatterplot of the sum of the eight OB/GYN ratings versus the sum

of the four IE ratings. The points have been jittered to avoid overlapping.

b = (b1, · · · , bI)′ and c = (c1, · · · , cJ)′ as missing data in the EM algorithm. We de-

note X∗ = (Y ′
1 , · · · , Y ′

I , T1, · · · , TI)′ as the observed data, Z∗ = (D ′, b ′, c ′) ′ as the missing

data, and Y ∗ = (X∗, Z∗)′ as the complete data. At the (r + 1)th iteration of EM algo-

rithm, the E-step involves calculation of the Q-function Q(θ|θ(r)) = E[log f(Y ∗|θ)|x∗, θ(r)] =∫
f(z∗|x∗, θ(r)) log f(y∗|θ)dz∗, where θ(r) denotes the parameter value from the rth iteration,

f(z∗|x∗, θ(r)) is the conditional distribution of missing data given the observed data and θ(r),

and f(y∗|θ) is the full likelihood, whose logarithm is

I∑
i=1

J∑
j=1

[
yij log Φ

(
βdi + σdibi + τdicj

)
+ (1− yij) log

{
1− Φ

(
βdi + σdibi+

τdicj

)}]
+

I∑
i=1

log(ST
ti|di) +

I∑
i=1

log(πdi) +
I∑

i=1

log
{
g1(bi)

}
+

J∑
j=1

log
{
g2(cj)

}
.

(1)
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The M-step involves maximizing Q(θ|θ(r)) with respect to θ to yield the new update θ(r+1).

The process is iterated from a starting value θ(0) to convergence. Under regularity con-

ditions, the value at convergence maximizes the likelihood function. The dimensionality

of integration and summations in the likelihood function and in f(y∗|θ) increase with the

number of tests and study subjects so that the integration in the E-step is intractable with

numerical integration techniques. Thus, we conduct estimation using MCEM algorithm.

Monte-Carlo approximation is formed in the MCEM algorithm to compute the required

expectation in Q(θ|θ(r)). Booth and Hobert (1999) proposed using a rejection or an im-

portance sampling scheme. Their method produces independent and identically distributed

samples that may be used to assess Monte-Carlo error at each iteration and hence suggests

a rule for changing the sample size to enhance speed. However, their method may break

down when the intractable integrals in the likelihood function are of high dimension. An

alternative approach is to use the Metropolis-Hastings algorithm, as in McCulloch (1997),

to sample from the conditional distribution using the density of unobserved variables as

the proposal distribution. In this article, we use the Metropolis-Hastings algorithm, but

with an adaptive proposal distribution. To generate N values z∗(n), n = 1, 2, · · · , N , from

the conditional distribution f(z∗|x∗, θ(r)) using the Metropolis-Hasting algorithm, we start

from the starting values z∗(0) = (d (0), b (0), c (0)) ′ with f(z∗(0)) = f(d (0), b (0), c (0)) > 0. At

the nth Metropolis-Hasting step, we sample a candidate (d̃, b̃, c̃) from the proposal distri-

bution f̃ (r)(d, b, c). With probability min(1, ω), (d (n+1), b (n+1), c (n+1)) = (d̃, b̃, c̃), where ω =

f(d̃, b̃, c̃|x∗, θ(r))f̃ (r)(d (n), b (n), c (n))/f(d (n), b (n), c (n)|x∗, θ(r))f̃ (r)(d̃, b̃, c̃); With probability 1−

min(1, ω), (d (n+1), b (n+1), c (n+1)) = (d (n), b (n), c (n)). The proposal distribution at the rth it-

eration of the EM algorithm is constructed to be f̃ (r)(d, b, c) =
I∏

i=1

f̃
(r)
D (di)f̃

(r)
b (bi)

J∏
j=1

f̃ (r)
c (cj),

where f̃
(r)
D (x) is the empirical distribution of the di’s sampled from the (r − 1)th MCEM

iteration and f̃
(r)
b (x) and f̃

(r)
c (x) are two Student’s t distribution centered, respectively, at
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the means of the bi’s and cj’s sampled from the (r − 1)th MCEM iteration (Gelman, 1995).

The proposal distribution here dynamically incorporates the obtained information of the

conditional distribution f(z∗|x∗, θ(r)) from the previous MCEM step, and thus greatly im-

proves the performance of the Metropolis-Hasting Markov chain. The starting values z∗(0)

of the Metropolis-Hastings algorithm are chosen to be the M-step estimates of the previous

step of the MCEM algorithm. In the analysis of the PRS study and numerical simulation

studies presented in the next two sections, we run 100 steps in the EM algorithm and 105

Monte-Carlo iterations in each MCEM step.

The likelihood of our proposed model is intractable due to high-dimensional integration

and summation. As a consequence, information criteria such as Akaike’s information cri-

terion (AIC) and Bayesian information criterion (BIC) is difficult to use to select among

candidate latent class models. We choose to use the model selection criteria ICH,Q proposed

by Ibrahim, Zhu, and Tang (2008):

ICH,Q = −2Q(θ̂|θ̂) + 2H(θ̂|θ̂) + cI,npar · npar, (2)

where npar is the number of independent parameters in the candidate model, cI,npar is the

penalization term depending on I and npar (for instance, cI,npar = log(I)), Q(·|·) is the Q-

function in the EM algorithm, H(·|·) is the H-function in the EM algorithm, and θ̂ is the

estimate of parameter θ. In (2), Q(θ̂|θ̂) =
∫
log f(y∗|θ̂)f(z∗|x∗, θ̂)dz∗ is a direct byproduct of

the MCEM algorithm, since it can be obtained by running one more step after θ̂ is obtained

in the MCEM and plugging θ̂ into the Monte-Carlo estimate of Q(θ|θ̂) from this extra step.

The H-function H(θ̂|θ̂) = E[log f(z∗|x∗, θ̂)] =
∫
log f(z∗|x∗, θ̂)f(z∗|x∗, θ̂)dz∗, however, needs

to be further estimated because density f(z∗|x∗, θ̂) does not have a closed form and thus can

not be estimated by Monte-Carlo approximation. Ibrahim, Zhu, and Tang (2008) proposed

a semi-nonparametric truncation estimator for density f(z∗|x∗, θ̂) based upon Hermite series

expansion: f̂k(z
∗|x∗, θ̂) = P 2(t,ψ, k)ϕ(z∗; µ̂(θ̂), Σ̂(θ̂)), where t = R−1(θ̂)(z∗ − µ̂(θ̂)), Σ̂(θ̂) =
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R(θ̂)RT (θ̂), ϕ(z∗; µ̂(θ̂), Σ̂(θ̂)) is a multivariate normal density with mean µ̂(θ̂) and covariance

matrix Σ̂(θ̂), µ̂(θ̂) and Σ̂(θ̂) are the conditional mean and covariance matrix of z∗ given x∗

and θ̂. Here, P (t, ψ, k) is a multivariate polynomial of order k, and ψ are the coefficient

vector of P (t, ψ, k). The coefficient vector ψ is estimated through a set of random sample

from f(z∗|x∗, θ̂) via quasi maximum likelihood.

The class of model selection criteria (2) is denoted as ICH(k),Q if semi-nonparametric

estimator f̂k(z
∗|x∗, θ̂) is used to estimate the H-function H(θ̂|θ̂) in (2). The analytic ap-

proximation to the integrand of the H-function and its computation may be cumbersome

for large k. But Gallant and Nychka (1987) and Fenton and Gallant (1996) showed that

f̂k(z
∗|x∗, θ̂) approximates f(z∗|x∗, θ̂) well for even small k. Ibrahim, Zhu, and Tang (2008)

also showed that ICH(k),Q preforms well with small k. Both the simulation studies and ex-

amples in Ibrahim, Zhu, and Tang (2008) demonstrated no much difference between ICH(0),Q

and other ICH(k),Q’s with k ≥ 1. As a result, we choose to use ICH(0),Q throughout this paper

given its balance between computational complexity and selection accuracy.

Web Appendix C. Simulation results for sensitivity

and specificity estimates of R-OB/GYNs from the la-

tent class model that incorporating both R-OB/GYNs

and IEs.

Simulation results for sensitivity and specificity estimates of R-OB/GYNs from model (9) in

the manuscript are presented in Table S.1.

5



Table S.1: Simulation results for sensitivity and specificity estimates of R-OB/GYNs from
model (9). The averages of estimates (standard errors) and the percentage of selecting true
model by ICH(0),Q are presented. The true sensitivity, specificity and disease prevalence are
Se = 0.88, Sp = 0.87, and π1 = 0.7, respectively.

Number of Working random Rate of selecting
tests effects distribution Ŝe(se) Ŝp(se) π̂1(se) true model

5 Normal 0.82(0.052) 0.81(0.043) 0.76(0.053) 59%

MixN 0.88(0.052) 0.86(0.057) 0.69(0.058)

10 Normal 0.81(0.061) 0.81(0.055) 0.78(0.044) 53%

MixN 0.88(0.066) 0.87(0.068) 0.70(0.050)

Web Appendix D. Discussion on the of IE data

The use of IE data is one of the key aspects in the application of the proposed methodology.

The following discussion addresses the three issues on the use of IE data.

First, with regard to the number of IEs, it is important to first understand why the

inference are not sensitive to parameters of the polychotomous logit model. In part, this is

due to the fact that P (Di = 1|Ti = 4) ≈ 1 and P (Di = 0|Ti = 0) ≈ 1 for all parameters

considered. We think this is sensible since it would seem very unlikely that you would have a

positive (negative) gold standard when all the IEs were negative (positive). You would need

a large enough group of IEs to have this confidence. This number depends on the particular

application. However, for a general rule, we recommend a minimum of four expert ratings.

Second, we conducted simulation studies to investigate the performance of the proposed

method when IEs only examine a subset of the patients. We repeated the simulation study

in Table 1(B) in the manuscript with a subset of the patients examined by the four IEs.

Table S.3 in this document shows the simulation results for the scenarios when the IEs

examine 80%, 50% and 20% of the patients, respectively. From Table S.3, we can see that
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the estimates of the sensitivity and specificity of the R-OB/GYNs have no or very little bias

when the IEs examine 80% and 50% of the patients. When the proportion of examined

patients decreased to 20%, the estimates have more substantical bias.

Table S.2: Simulation results for sensitivity and specificity under the estimated imperfect
reference standard when the IEs examine a subset of the patients. The random effects
of the true models follow mixture normal (MixN) distribution. The averages of estimates
(standard errors) and the percentage of selecting true model by ICH(0),Q are presented. The
true sensitivity, specificity and disease prevalence are Se = 0.88, Sp = 0.87, and π1 = 0.7,
respectively.

Number of Working random Rate of selecting
tests effects distribution Ŝe(se) Ŝp(se) π̂1(se) true model

IEs rate 80% of the patients

5 Normal 0.86(0.059) 0.86(0.049) 0.72(0.051) 88%

MixN 0.88(0.054) 0.87(0.052) 0.69(0.050)

10 Normal 0.87(0.061) 0.86(0.058) 0.71(0.054) 87%

MixN 0.88(0.060) 0.87(0.057) 0.70(0.048)

IEs rate 50% of the patients

5 Normal 0.87(0.050) 0.86(0.051) 0.71(0.042) 85%

MixN 0.88(0.055) 0.87(0.057) 0.70(0.051)

10 Normal 0.87(0.054) 0.85(0.062) 0.71(0.044) 89%

MixN 0.88(0.061) 0.87(0.054) 0.70(0.053)

IEs rate 20% of the patients

5 Normal 0.82(0.063) 0.81(0.061) 0.76(0.046) 62%

MixN 0.88(0.053) 0.87(0.059) 0.70(0.050)

10 Normal 0.83(0.068) 0.84(0.067) 0.75(0.063) 59%

MixN 0.88(0.052) 0.87(0.056) 0.70(0.052)

Third, we conducted simulation studies to investigate the performance of the proposed

method when the patients are not examined by all IEs. We repeated the simulation study

in Table 1(B) and Table 1(C) in the manuscript when 20% of the patients miss one of the
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four IE ratings. We imputed the missing ratings by assuming missing completely at random.

Table S.3 in this document shows the simulation results, which indicate that the estimates

of the sensitivity and specificity of the R-OB/GYNs are robust. Therefore, we suggest that,

when the patients are not examined by all IEs, the proposed method can still function very

well with the appropriate imputation for the missingness.

Table S.3: Simulation results for sensitivity and specificity when 20% IE’s ratings are missing,
under the scenarios (B) with a correctly specified imperfect reference standard (γ0 = −4.5,
γ1 = 0.1, γ2 = 0.2 in equations (7) and (8) in the manuscript and (C) with an incorrectly
specified imperfect reference standard (γ0 = −4.5, γ1 = 0.1, γ2 = 0.1 equations (7) and (8)
in the manuscript. The random effects of the true models follow mixture normal (MixN)
distribution. The averages of estimates (standard errors) and the percentage of selecting
true model by ICH(0),Q are presented. The true sensitivity, specificity and disease prevalence
are Se = 0.88, Sp = 0.87, and π1 = 0.7, respectively.

Number of Working random Rate of selecting
tests effects distribution Ŝe(se) Ŝp(se) π̂1(se) true model

(B)
5 Normal 0.87(0.057) 0.87(0.067) 0.70(0.053) 94%

MixN 0.88(0.052) 0.87(0.065) 0.70(0.056)

10 Normal 0.88(0.064) 0.88(0.051) 0.70(0.057) 95%

MixN 0.88(0.052) 0.87(0.050) 0.70(0.049)

(C)

5 Normal 0.88(0.063) 0.86(0.058) 0.71(0.045) 91%

MixN 0.88(0.056) 0.87(0.059) 0.70(0.047)

10 Normal 0.87(0.055) 0.87(0.056) 0.69(0.053) 91%

MixN 0.88(0.057) 0.87(0.050) 0.70(0.041)

Web Appendix E. On IE exchangeability

In the Physician Reliability Study (PRS), there are four international experts (IEs). The

ratings from these four IEs were taken as the imperfect reference standard in diagnosing
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endometriosis. Let us denote el = 0 or 1, l = 1, 2, 3, 4, the rating from the lth IE. Under

exchangeability of the raters, P (T̃
(1)
i = e1, T̃

(2)
i = e2, T̃

(3)
i = e3, T̃

(4)
i = e4|Di = di) = P (Ti =∑4

l=1 el|Di = di) for any combination of e1, e2, e3, and e4, where di = 0 or 1. Thus, when

we assume exchangeability between raters, it is reasonable to use the sum of the IE ratings

that is characterized by polychotomous logit model in Page 8 in the manuscript.
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Figure S.2: Empirical conditional probabilities and their polychotomous logit model repre-
sentations when (1) two of the four IEs had sensitivity and specificity 0.98 and another two
had 0.93, (2) two had sensitivity and specificity 0.95 and another two had 0.90, and (3) two
had sensitivity and specificity 0.95 and another two had 0.75.

Hypothetically, if the IEs are not exchangeable (i.e., P (T̃
(1)
i = e1, T̃

(2)
i = e2, T̃

(3)
i =

e3, T̃
(4)
i = e4|Di = di) varies with the different values of (e1, e2, e3, e4) and does not only

depend on
∑4

l=1 el), the approach might lead to biased estimation. However, we show that, in

the scenario of non-exchangeability, the polychotomous logit model is still able to capture the

conditional probabilities of the sum of the IE ratings ST
ti|di . Further, and more importantly,

the estimates of the sensitivity and specificity of the R-OB/GYNs are unbiased when the

exchangeable assumption is violated. The following discussion consists of two parts: first,

to show the flexibility of polychotomous logit model (Equation (7) in the manuscript), we

demonstrate through a large simulated dataset that the polychotomous logit model is able

to form an appropriate representation for the conditional probabilities of the sum of the
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IE ratings given the true disease status in the scenario of non-exchangeability; second, the

simulation study in Table 1(B) was similarly conducted with four non-exchangeable IEs and

the results show that the estimates of the sensitivity and specificity of the R-OB/GYNs

remain nearly unbiased.

Part I: Flexibility of polychotomous logit model on non-exchangeability

We simulated a large dataset with 50000 observations, where each observation contained

the ratings from four IEs. Under the conditional independence assumption (although this

works more generally), we assumed two of the four IEs had larger sensitivity and specificity

than the other two IEs. Based on the large dataset, we were able to show that the polychoto-

mous logit model characterized ST
ti|di remarkably well under non-exchangeability. We fit the

polychotomous logit model to the simulated data and estimated the model parameter of the

polychotomous logit regression (Equation (7) in the manuscript) as their model representa-

tions. Figure S.2 shows the empirical conditional probabilities and their polychotomous logit

model representations when (1) two of the four IEs had sensitivity and specificity 0.98 and

another two had 0.93, (2) two had sensitivity and specificity 0.95 and another two had 0.90,

and (3) two had sensitivity and specificity 0.95 and another two had 0.75. From Figure 1, we

can conclude that the polychotomous logit model describes the correct conditional distribu-

tion of the sum of the IEs, even when the four IEs are not exchangeable. We also examined

other cases where the four IEs had different combination of sensitivity and specificity. In all

cases, the polychotomous logit model did a very good job representing ST
ti|di .

Part II: Robustness of sensitivity and specificity estimation

To investigate the robustness of the estimates of the sensitivity and specificity of the R-

OB/GYNs when the IEs are non-exchangeable, we conducted a simulation study similar to

Table 1 (B) in the manuscript. The ratings of the IEs were generated by assuming two of the

four IEs had sensitivity and specificity of 0.98 and another two had 0.93. As in Table 1(B),
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the parameters of the polychotomous logit model characterizing ST
ti|di are assumed to be

known. Table S.4 in this document shows the simulation results. The estimated sensitivity

and specificity of R-OB/GYNs are nearly unbiased under the correctly specified conditional

probabilities ST
ti|di .

Table S.4: Simulation results for sensitivity and specificity under the estimated imperfect
reference standard from the polychotomous logit model when the IEs are nonexchangeable.
The random effects of the true models follow mixture normal (MixN) distribution. The
averages of estimates (standard errors) and the percentage of selecting true model by ICH(0),Q

are presented. The true sensitivity, specificity and disease prevalence are Se = 0.88, Sp =
0.87, and π1 = 0.7, respectively.

Number of Working random Rate of selecting
tests effects distribution Ŝe(se) Ŝp(se) π̂1(se) true model

5 Normal 0.88(0.063) 0.87(0.056) 0.70(0.053) 92%

MixN 0.88(0.061) 0.87(0.064) 0.70(0.058)

10 Normal 0.87(0.055) 0.87(0.054) 0.70(0.052) 95%

MixN 0.88(0.059) 0.87(0.051) 0.70(0.049)

Although the approach is robust to non-exchangeability among the IEs, we have reasons

to assume exchangeability of the IEs for the PRS. The IEs in the PRS are selected by the

investigators to be well known international experts with an equivalent amount of expertise.

Web Appendix F. On the violation of the independence

of random effect bi and the imperfect reference Ti

In the article, we assume the independence of random effect bi and the imperfect reference

Ti. Now we further investigate features and performance of the proposed methodology when

the assumption is violated. It is reasonable to assume that, conditional on the disease status,
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subjects who are diagnosed as diseased are more likely to be diagnosed as diseased by the IEs.

In this circumstance, the assumption of independence between the random effect bi and the

imperfect reference standard Ti is violated. To link the ratings from the IEs and the ratings

from the R-OB/GYNs, it is natural to incorporate random effects into the polychotomous

logit model. As a result, we consider the following random-effects polychotomous logit model

P (Ti = ti|Di = 1, bi) =
exp(γ0 + γ1ti + γ2t

2
i + τbi)

1 +
3∑

h=0

exp(γ0 + γ1h+ γ2h
2 + τbi)

, ti = 0, 1, · · · , 3, (3)

where the random effect bi is shared with Equation (5) in the manuscript. We now examine

the features of the polychotomous logit model and the robustness of the estimates of the

sensitivity and specificity of the R-OB/GYNs when the assumption of independence between

the random effect bi and the imperfect reference standard Ti is violated. Our discussion

consists of two parts: first, we show that the polychotomous logit model still provides a

good representation of the conditional probabilities of the sum of the IE ratings ST
ti|di when

the independence assumption is violated; second, we show that ignoring the conditional

dependence between bi and Ti results in nearly unbiased estimates of the sensitivity and

specificity of the R-OB/GYNs and unbiased estimates of the prevalence of endometriosis.

Part I: Flexibility of polychotomous logit model on non-exchangeability

We generated a large simulated dataset with 50000 observations from the random-effects

polychotomous logit model (3), where each observation contained the ratings from four IEs.

Figure S.3 shows the empirical conditional probabilities and the polychotomous logit model

representations (1) when τ = −0.5 and (2) τ = −0.25. Here, we fit the polychotomous logit

model without random effect (Equation (7) in the manuscript) to the data, and obtaining

the parameters of the model corresponding to ST
ti|di . From Figure S.3, we can conclude that

the polychotomous logit model (Equation (7) in the manuscript) nicely characterizes ST
ti|di

when the conditional dependence is ignored. We examined other values of τ and obtained
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similar results.
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Figure S.3: Empirical conditional probabilities and their polychotomous logit model repre-

sentations when τ = −0.25 and τ = −0.5.

Part II: Robustness of sensitivity and specificity estimation

We further investigate the robustness of the estimates of the sensitivity and specificity

of the R-OB/GYNs when the IE ratings come from (3) with τ = −0.5. The simulation

study in Table 1 (B) in the manuscript was repeated with the ratings of the IEs generated

from (3). As in the standard approach proposed in the manuscript, the polychotomous

logit model parameters that characterize ST
ti|di are assumed to be known as the imperfect

reference standard. Table S.5 in this document shows the simulation results. The estimated

sensitivity and specificity of R-OB/GYNs are nearly unbiased even when the assumption

of independence between the random effect bi and the imperfect reference standard Ti is

violated.
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Table S.5: Simulation results for sensitivity and specificity under the estimated imperfect
reference standard from the polychotomous logit model when the IEs ratings are simulated
from the random-effects polychotomous logit model (3). The random effects of the true
models follow mixture normal (MixN) distribution. The averages of estimates (standard
errors) and the percentage of selecting true model by ICH(0),Q are presented. The true
sensitivity, specificity and disease prevalence are Se = 0.88, Sp = 0.87, and π1 = 0.7,
respectively.

Number of Working random Rate of selecting
tests effects distribution Ŝe(se) Ŝp(se) π̂1(se) true model

5 Normal 0.88(0.057) 0.86(0.053) 0.70(0.058) 92%

MixN 0.88(0.063) 0.87(0.063) 0.70(0.056)

10 Normal 0.88(0.051) 0.87(0.061) 0.69(0.054) 93%

MixN 0.88(0.053) 0.86(0.065) 0.70(0.059)
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