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Web Appendix A

Choosing the number of latent factors k adaptively

The number of latent factors, k, is tuned as the sampler progresses, with adaptations designed
to satisfy the diminishing adaptation condition in Theorem 5 of Roberts and Rosenthal (2007).
Following Bhattacharya and Dunson (2011), we adapt with probability p(t) = exp{α0 + α1t},
with t denoting the t-th iteration and α0, α1 chosen so that adaptation occurs around every
10 iterations at the beginning of the chain and then decreases in frequency exponentially fast.
In our application, we set α0 = −1 and α1 = −5 × 10−4. At every iteration, a random
number ut is sampled from a uniform distribution Unif(0,1), and adaptation occurs if ut ≤ p(t).
Whenever adaptation occurs, we count the columns of Λ having all elements in some pre-
specified neighborhood of zero. We can intuitively assume that the factors corresponding to
such columns have a negligible contribution, therefore we discard these columns of Λ and
continue the sampler with a reduced number of factors, which also helps save computing time.
Otherwise, if the number of such columns drops to zero we may be missing important factors,
therefore we add a column to the loadings. The other parameters are modified accordingly and,
when a factor is added, the new parameters are sampled from their prior distributions.

Refer to Bhattacharya and Dunson (2011) for further details on the adaptive Gibbs sampler.
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Web Appendix B

MCMC algorithm for the latent factor regression model

We provide a detailed description of the MCMC algorithm used to update from the posterior
distributions of the parameters based on the priors given in Section 2.1. The sampler cycles
through the following steps:

• Step 1 Update of Λ: sample λjh, δ1, δh, φjh from the following posteriors:

1. Denote the jth row of Λk∗ (the loading matrix Λ truncated to k∗ << p) by λj ; then
the λj ’s have independent conditionally conjugate posteriors given by

π(λj |−) ∼ Nk∗((D−1j + σ−2j η
′η)−1η′σ−2j θ

(j), (D−1j + σ−2j η
′η)−1)

with D−1j = diag(φj1τ1, . . . , φjkτk∗), η′ = [η1, . . . ,ηk∗ ] and θ(j) = (θj1, . . . , θjn), for
j = 1, . . . , p.

2. Sample φjh from

π(φjh|−) ∼ Gamma
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3. Sample δ1 from

π(δ1|−) ∼ Gamma
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4. Sample δh from

π(δh|−) ∼ Gamma
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for h ≥ 2, where τ

(h)
l =

∏l
t=1,t6=h δt for h = 1, . . . , p.

The sampling begins with a very conservative choice of k∗, which is then automatically
selected within the adaptive Gibbs sampler as described in Bhattacharya and Dunson
(2011).

• Step 2 Update of σ2j , j = 1, . . . , p: denoting as σ−2j the diagonal elements of Σ−1, sample

σ−2j from conditionally independent posteriors

π(σ−2j |−) ∼ Gamma

(
n

2
+ aσ, bσ +

∑n
i=1(θi −Ληi)

2

2

)
• Step 3 Update of ϕ−2: sample ϕ−2 from

π(ϕ−2|−) ∼ Gamma

(
N

2
+ aϕ, bϕ +

∑N
j=1(yj −Θj)

2

2

)
where N denotes the total number of observations, y is a column vector which stacks the
measurements for all women, y = (y1,t1,1 , . . . , yn,tn,nn

)′, and Θ is a N × 1 column vector
which stacks the scores for all subjects, Θ = {Biθi, . . . ,Bnθn}′, where each Biθi has
dimension ni × 1 with ni the number of measurements for subject i.
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• Step 4: Update of β and ω elements:

4-a) Given the prior ωlj ∼ Gamma(1/2, 1/2), l = 1, . . . , r and j = 1, . . . , k, sample ωlj
from the full conditional posterior

π(ωlj |−) ∼ Gamma

(
1,

1

2

(
1 + β2lj

))
4-b) Sample the jth column of the matrix of coefficients β from the full conditional pos-

terior

π(βj |−) ∼ N
((

X̃X̃′ + E−1
)−1

X̃η′·j ,
(
X̃X̃′ + E−1

)−1)
with matrix E corresponding to E = Diag(ω−1lj ), l = 1, . . . , r and j = 1, . . . , k.

• Step 5 Update of ηi: marginalizing out θi, the model can be rewritten as

yi = BiΛηi + Biζi + εi, εi ∼ N(0, ϕ2Ini), ζi ∼ Np(0,Σ)

= BiΛηi +α∗i , α∗i ∼ N(0, ϕ2Ini + BiΣB′i)

Thus, sample ηi from the full conditional posterior

π(ηi|−) ∼ N(A−1 ×C,A−1)

A = Λ′B
′
i(ϕ

2Ini + BiΣB′i)
−1BiΛ + Ik

B = β′xi + Λ′B
′
i(ϕ

2Ini + BiΣB′i)
−1yi

• Step 6 Update of θi: sample θi from conditionally independent posteriors

π(θi|−) ∼ Np((ϕ
−2B′iBi + Σ−1)−1(ϕ−2B′iyi + Σ−1Ληi),

(ϕ−2B′iBi + Σ−1)−1)

Web Appendix C

Setting parameters

To facilitate the routine implementation of the proposed method, the Matlab codes for the
LFRM and its joint modeling extensions (see Section 3) are available at the Biometrics website
on Wiley Online Library.

To implement our methodology, one has to choose the hyperparameters for the priors in
Section 2.1 and the parameters ν in (3) and p in (2). Likely, the most daunting task is the choice
of the bandwidth ν, that we fixed to 4 as a reasonable default value to ensure smooth trajectories.
In general, one can not obtain curves bumpier than the resolution determined by the bandwidth,
thus the choice of ν requires careful sensitivity analysis to identify a value which induces the
desired level of smoothness for the trajectories. Applications with trajectories not having the
same level of smoothness everywhere would require spatially adaptive smoothness, which can
potentially be achieved by choosing a pre-specified finite dictionary of different bandwidths and
then allowing the kernels to have varying unknown bandwidths via a griddy Gibbs sampler.

The basis function representation in (2) requires the choice of a truncation p. In general,
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one can include a rich, pre-specified set of basis functions (p ≈ 10, 20 or larger) since the model
allows automatic shrinkage and effective removal of basis coefficients not needed to characterize
any of the curves under study, thus effectively induces basis selection. In our blood pressure
application, the choice p = 10 ensured sufficiently many equally-spaced kernels to capture a
high variety of smooth trajectory shapes.

Other parameters that need to be determined in the MCMC algorithm include υ, a1, a2 in
(8)-(9). As remarked in Section 2.1, a choice a2 > 1 induces stochastically increasing τh in (8),
which favors more shrinkage as the column index increases. We set υ = 5 and a1 = a2 = 1.5,
but our sensitivity analyses showed robustness to different choices of these hyperparameters.
Furthermore, one has to choose aσ and bσ, which are the inverse-gamma hyperparameters values
for σ2j , and aϕ and bϕ, which are the inverse-gamma hyperparameter values for the measurement

error variance ϕ2. Our suggestion is to fix a mean and variance for the inverse-gamma priors
and solve for the hyperparameters.

Alternatively to the Cauchy prior in (11), one could choose a Gaussian prior distribution
for the β coefficients but this leads to poorer performance if a subsample of women has very
sparse measurements. This occurrence is common when dealing with longitudinal data, which
often consist of few and sparse measurements per subject, and it is verified in the blood pressure
data where a group of women has few observations, usually located in the second half of the
pregnancy. For this group of women, the prior becomes more influential and the intercept is
pulled closer to zero than for women with more observations, resulting in an undesired low MAP
trajectory estimate at early pregnancy.

As for the bivariate probit model in Section 3.2, we chose normal and multivariate normal
priors for the additional model parameters. The prior for the intercept on the latent indicator of
preeclampsia, α1, was set to be α1 ∼ N(Φ−1(0.12), 0.25), whereas the prior on the intercept for
the latent indicator of low birth weight, α2, was set to correspond to α2 ∼ N(Φ−1(0.082), 0.25).
The hyperprior mean for α1 was set to be moderately high provided that the proportion of
preeclamptic women in the sample is over twice the typical incidence range of 5-8%, and that
of α2 was chosen to correspond to the national average. Finally, γ1 ∼ Nk(µγ,1,Σγ,1) and
γ2 ∼ Nk(µγ,2,Σγ,2), with µγ,1 = µγ,2 = 0, and Σγ,1 = Σγ,2 = Ik. We repeated the analysis for
a variety of these hyperparameter values (i.e., with the variance multiplied by 2 and divided by
2, etc.), but no noticeable differences were found in the results.

Finally, we examined the joint model of birth weight, gestational age at delivery and blood
pressure. Specifically, we chose µ∗γ = 0 and Σ∗γ = Ik as mean and covariance matrix of the

multivariate normal prior distribution for γ, whereas ν∗h = 4, and V h =

(
1 0
0 1

)
were chosen as

the hyperparameter values of the inverse-Wishart distribution on Σh, h = 0, 1. Our sensitivity
analyses showed that results were robust to different choices of these parameters. Finally, we
applied an EM algorithm MLE using a two-component mixture of bivariate normals to the data
(without including covariate information) to determine the hyperparameters µh0 and Σh

µ0, the
mean and covariance matrices of the two Gaussian mixture components. We obtained

µ1
0 =

(
µ1
0g

µ1
0b

)
=

(
36

2.57

)
,µ2

0 =

(
µ2
0g

µ2
0b

)
=

(
39

3.30

)
,Σ1

µ0 =

(
7.66 1.37
1.37 0.35

)
,Σ2

µ0 =

(
1.34 0.19
0.19 0.22

)
.
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Web Appendix D

Simulation experiment

To evaluate the performance of our model and to compare it with related methods, we considered
a simulation example. To make the simulated data more realistic and interpretable we based
them on the Healthy Pregnancy, Healthy Baby (HPHB) study, assuming n = 200 and with
the true parameters set equal to the posterior means from the real data analysis (see Section
4 of the paper). We generated samples of gestational age (in weeks) and birth weight (in Kg)
from a two-component mixture of bivariate normal distributions with true means set equal to
µ1 = (34.54, 2.27)′ and µ2 = (38.17, 3.50)′ and covariance matrices

Σ1 =

(
1.516 0.261
0.261 1.235

)
and Σ2 =

(
1.212 0.185
0.185 1.221

)
We standardized time to the [0, 1] interval, tij ∈ [0, 1], and set b1(tij) = 1 and bl+1(tij) =
exp{−4||tij − ψl||2}, l = 1, . . . , 9, with ψl’s equally spaced kernel locations in [0, 1] and p = 10.

To implement our Bayesian analysis, we chose a Gamma(0.5, 0.25) prior distribution with
mean 2 for the diagonal elements of Σ−1, and we placed a Gamma(0.5, 0.2) with mean 2.5 on
ϕ−2. The gamma hyperparameter for φjh was set to be υ = 5, a1 = a2 = 1.5 in (8)-(9) and a
Cauchy prior was induced on the matrix of coefficients β (11). We chose k = 4 as the starting
number of factors, and we adapted k according to the procedure described in Bhattacharya and
Dunson (2011). The MCMC algorithm was run for 25,000 iterations including a 5,000 iterations
burn-in, and collected every 5th sample to thin the chain and reduce the autocorrelation in the
posterior samples. Based on the examination of traceplots of function values at a variety of
time locations and for different subjects, the sampler appeared to converge rapidly and to mix
efficiently.

The average of the estimated number of factors was 11.37 corresponding to ktrue = 11,
and with empirical 95% credible interval given by [9, 13]. The estimated posterior mean of µ1

was (34.37, 2.35) and the estimated posterior mean for µ2 was (37.91, 3.42) respectively, with
corresponding 95% credible intervals containing the true values of µ1 and µ2. The estimates of
the covariance matrices Σ1 and Σ2 were

Σ̂1 =

(
1.413 0.429
0.429 1.105

)
and Σ̂2 =

(
1.098 0.265
0.265 1.152

)
with 95% credible intervals containing the true values of Σ1 and Σ2.

The left panels of Figure 1 show the data, true curves and estimates under the LFRM for
three randomly selected subjects. In general, estimates are very close to the true curves even
when data are sparse, as for subject 122, and the true curves are always enclosed in the credible
bounds.

We then obtained a smooth estimator of the covariance operator and its corresponding
eigenfunctions as described by Crainiceanu and Goldsmith (2010). In contrast to the LFRM,
FPCA does not allow to learn about the representation size k, thus we need to estimate the
dimension of the functional space. As a fast alternative to cross-validation, we decided to
retain a number of eigenfunctions such that the cumulative percentage of explained variance
was greater than 90% and the explained variance by any single subsequent component was less
than 5%. Therefore, we retained the first k = 4 eigenfunctions and obtained Λ as the least
squares estimate of

Ψ = B∗ ×Λ (1)
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with Ψ denoting here the matrix of eigenfunctions and Oi ×B∗ = Bi, Bi denoting the design
matrix for subject i and Oi representing an (ni × T ) matrix with column j equal to a column
of 1’s if subject i was measured at time j, j = 1, . . . , T (T denotes the number of unique time
locations). We then repeated the analysis fitting the LFRM with Λ and the number of factors
k = 4 fixed. We will denote this procedure as two-stage FPCA approach. Estimates are shown
in the right panels of Figure 1. We can notice some deviations of the estimated curves from the
true curves along the course of the entire pregnancy, with very wide confidence intervals at early
pregnancy when typically no or few measurements are observed and when data are more sparse,
as for subject 122. Notice also that for subject 8 the true curve is no longer enclosed within the
credible bounds at delivery. The analysis was repeated retaining ktrue = 11 eigenfunctions, but
this did not lead to any significant improvement in the performance.

Under the two-stage FPCA approach, the estimated posterior mean of µ1 was (34.26, 2.31)
and the estimated posterior mean for µ2 was (37.81, 3.39) respectively, with corresponding 95%
credible intervals containing the true values of µ1 and µ2. The estimates of the covariance
matrices Σ1 and Σ2 were

Σ̂1 =

(
1.249 0.383
0.383 1.087

)
and Σ̂2 =

(
1.227 0.305
0.305 1.165

)
To assess the predictive performance, we repeated the analysis holding out and predicting
the MAP measurements collected after the 30th week of gestation for 100 randomly selected
women having at least 1 observation in the first 30 weeks and 1 observation after the 30th
week. Also, we fitted “baseline” LFRM and two-stage FPCA approach with no covariates
setting ηi ∼ N(0, Ik). Results are reported in Table 1 together with the computing time in
seconds per hundred of iterations. The high values of the predictive errors are not surprising
given the presence of many outliers in the MAP measurements that are hard to predict. The
LFRM leads to better predictive performance than the two-stage FPCA approach both with
and without covariates. However, we notice that the predictive errors do not decrease with
the incorporation of covariate information: this seems to suggest that in our blood pressure
application the outcomes are predominantly learned from the random deviations rather than
from the covariates. In fact, the MAP measurements are affected by great variability that makes
them hard to predict despite the available covariate information.

Table 1

Mean square predictive error (MSPE), predictive average absolute bias (PAAB) and predictive

maximum absolute bias (PMAB) for the simulated data with the LFRM and the two-stage FPCA

approach fitted with and without covariates, respectively. The computing time in seconds is per hundred

of iterations.

LFRM two-stage FPCA
Covariates No Covariates Covariates No Covariate

MSPE 70.02 69.31 73.45 74.11

PAAB 6.63 6.61 6.80 6.83

PMAB 27.74 27.50 28.63 28.72

Comp. Time 40 21 34 15

Figure 2 shows the estimated joint distribution of gestational age (in weeks) and birth weight (in
Kg) for subjects 8 and 46 in the simulation example under the LFRM, along with corresponding
contour plots. The true values of gestational age at delivery and birth weight correspond to
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(38.82, 3.47) and (33.51, 1.41) for subject 8 and subject 46, respectively. The joint distribution
is bimodal, with the two components of the Gaussian mixture clearly distinct, and with the joint
model assigning higher mass to the true component each subject belongs to, that is, the second
component for subject 8 and the first component for subject 46. The posterior probability of
being in component 1 is 0.3057 for subject 8, and increases to 0.6025 for subject 46. Analogous
results are obtained with the two-stage FPCA approach, with posterior probabilities of being
in component 1 being equal to 0.2938 and 0.5592 for subjects 8 and 46, respectively.

The analysis was repeated under different choices of the hyperparameter values and initial
number of factors for the LFRM. The results were robust, with no noticeable differences in the
conclusions.
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Figure 1: Data and function estimates for 3 subjects in the simulation example under the LFRM (left
panels) and two-stage FPCA (right panels). The true functions are represented with dashed lines, the
posterior means are solid lines, and the dotted lines are 95% pointwise credible intervals.
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Figure 2: LFRM-estimated joint distribution of gestational age (weeks) and birth weight (Kg) and
contour plot for subjects 8 and 46 in the simulation example.
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1 Web Figure 1
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Figure 3: MAP function estimates for 6 randomly selected women under the two-stage FPCA approach.
The posterior means are solid lines and dashed lines are 95% pointwise credible intervals. The x-axis
scale is time in weeks starting at the estimated day of ovulation.
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2 Web Figure 2
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Figure 4: Side-by-side boxplot of the norms of the posterior mean estimates of the columns of the factor
loading matrix Λ.

The boxplots show a decay of the norms from λ1 to λk∗ , as expected by the structure induced by
the MGPS prior on Λ. Note that k∗ = 11 corresponds to the posterior mean number of factors.
Therefore, the first few important factors are loaded heavily and significantly contribute to the
estimated of θi. Although the norms of the remaining factors appear equal to zero, none of the
factor loadings is exactly equal to zero, but shrunk towards zero by the MGPS prior.
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3 Web Figure 3
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Figure 5: MAP function estimates at the 35th week for four subjects in the test set. The posterior
means are solid lines and dashed lines are 95% pointwise credible intervals. The x-axis scale is time in
weeks starting at the estimated day of ovulation.
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