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1. STAR algorithm details 

1.1. Suffix array search against a reference genome 
Suffix Array (SA) of the whole genome is utilized to find the Maximum Mappable Prefixes (MMP). 

The MMP search is originated at 5’ of the reads, and also at arbitrary user defined positions along the 
read. All the possible alignments with the length equal to Maximum Mappable Length (MML) are 
collected, which allows a comprehensive alignment of multi-mappers. If the MMP does not cover the 
whole read, the remaining unmapped portion is aligned again using the same procedure, continuing 
until the end of the read sequence. The whole procedure is performed in both 5’ to 3’ and 3’ to 5’ 
directions. Suffix Array is generated prior to the alignment and stored on disk. Before the alignment 
begins, SA and genome sequence are loaded into RAM and are stored in the Linux shared memory, 
allowing access from multiple processes (threads). The SA contains both the positive and negative 
strand of the genome. In case of the genomes larger than 2 Gigabases, the SA indices require fractional 
bytes, for example, for genomes 2 to 4 Gigabase-long, each SA index occupies 33 bits. 

1.2. Pre-indexing of suffix arrays 
While suffix array search is theoretically fast owing to its binary nature, in practice it may suffer 

from non-locality resulting in persistent cache misses which deteriorate the performance. To alleviate 
this problem we developed a pre-indexing strategy. After the SA is generated, we find the locations of 
all possible L-mers in the SA, L<=Lmax, where Lmax is user defined and is typically 12-15. Since the 
nucleotide alphabet contains only four letters, there are NL=22L different L-mers for which the SA 
locations have to be stored. For example, if L=Lmax=14, NL~268M and for 33-bit SA indices it will require 
1GB of storage. All L-mers with L<Lmax will require 1/3 more of storage space. Using the L-mer indices 
we can immediately bound each search in the SA for all strings longer than Lmax , and obtain the 
complete answer for all strings shorter than Lmax. This procedure makes the SA search more local and 
speeds it up by a factor of 2-4. 

1.3. Anchors and alignment windows 
The SA search (step 1) yields a collection of alignments that cover all or just portions of the read, 

possibly multiple times. In the next step the “anchor” alignments are selected, defining the genomic 
regions to which the read is similar. In the current implementation, all the alignments that map less 
than a user defined value (typically 20-50) are selected as anchors. Alignment windows are genomic 
regions selected around the anchors. All the alignments, anchor and non-anchor, located within an 
alignment window will be stitched to each other in an attempt to find the best “linear” alignment (step 
5). The genome is split into equally size bins, and all the anchor bins that are within a user defined 
distance to each other are lumped into one window. Alignment windows are necessary to include short 
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pieces of the read which map too many times (and hence cannot be anchors) such as short 
donor/acceptor portions of splice junctions, or micro-exons.  

1.4. Scoring scheme  
Total score for each alignment is calculated as a sum of match scores, minus sum mismatch scores 

for mismatched bases, minus the penalties for insertions, deletions and genomic gaps:    
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In the present version of STAR matches and mismatches are scored as +/-1. 

For short deletions and all insertions the penalty is a sum of user-defined indel opening penalty 
and indel extension penalty which proportional to the indel length: 

𝑃𝑖𝑛𝑠/𝑑𝑒𝑙 = 𝑃𝑖𝑛𝑠/𝑑𝑒𝑙
𝑜𝑝𝑒𝑛 + 𝑃𝑖𝑛𝑠/𝑑𝑒𝑙

𝑒𝑥𝑡𝑒𝑛𝑑 ∙ 𝐿𝑖𝑛𝑠/𝑑𝑒𝑙 

 Deletions that are longer than a user defined minimum intron size are considered splice junction 
(gaps), and their penalties consist of a constant gap opening penalty and a penalty which depends 
logarithmically on the gap length.  

The gap opening penalties are user-defined and can be set independently for GT/AG, GC/AG, 
AT/AC and all other (non-canonical) motifs. The penalties for different intron motifs have to be 
selected according to the frequency expectations of different intron motifs in the species under study. 
The default penalties are adapted for the mammalian genomes, where the major canonical intron 
motif GT/AG dominates over all the others, followed by GC/AG, and by much less frequent AT/AC and 
other non-canonical motifs. Note that increasing the gap penalties biases the alignments towards un-
spliced alignment with mismatches (for example, pseudogenes). 

1.5. Stitching and extension 
The mapped seeds within the windows selected in step 1.3 are stitched together into “transcripts” 

assuming a linear transcription model, i.e. the different blocks of the alignment do not overlap, and 
blocks that follow each other in the read sequence have to also follow each other in the genome. Two 
seeds are stitched together using a simple algorithm that allows for one genomic gap and several 
mismatches. The algorithm searches for the junction position in the read sequence 𝑟𝑗that yields the 
maximum score by finding the maximum of the following quantity: 

max
𝑟1<𝑟𝑗<𝑟2

� � �
1 𝑖𝑓 𝑅(𝑟1 + 𝑟) = 𝐺(𝑔1 + 𝑟) & 𝑅(𝑟1 + 𝑟) ≠ 𝐺(𝑔1 + 𝑟 + ∆)
−1 𝑖𝑓 𝑅(𝑟1 + 𝑟) ≠ 𝐺(𝑔1 + 𝑟) & 𝑅(𝑟1 + 𝑟) = 𝐺(𝑔1 + 𝑟 + ∆)
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Where  𝑅  and 𝐺  are read (query) and genome sequences, coordinates 𝑟1, 𝑟2,𝑔1,𝑔2 are defined in 
the diagram below, ∆≡ (𝑔2 − 𝑔1) − (𝑟2 − 𝑟1) is the alignment gap with the corresponding gap 
penalty 𝑃𝑔𝑎𝑝(𝑟𝑗). The complexity of this algorithm is proportional to the number of unmapped query 
sequence bases between the mapped seeds, i.e. 𝑟2 − 𝑟1 − 1. 

 

Note that current implementation traverses through all the possible paths within a window of 
aligned pieces, which can be clearly made more efficient by dynamic programming in the future 
releases. If necessary, the alignments are extended towards unmapped 5’ and 3’ end of the reads, 
using a simple algorithm stops the extension when the score reaches the maximum or there are too 
many mismatches. 

1.6. Selecting the best alignments 
Alignments from all windows are collected and sorted by their score. All the alignments scored 

within a user-defined range of the maximum score are considered multi-mappers. Some additional 
user-configurable filtering can be done before the alignments are output. 

 

1.7. Chimeric alignments 
If the best scoring (“main”) alignment window does not cover the entire read, we report chimeric 

connections to the other windows that cover portions of the read not covered by the main window. 
These chimeric connections between windows can span long distance on the same strand, or different 
strands on the same chromosome, or different chromosomes.  
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Figure S-1 

A diagram illustrating detection of chimeric transcripts 

 

 

As an example of detecting a chimeric junction, we analyzed the chimeric reads detected by STAR in 
the ~40M 2x76 reads of K562 RNA-seq dataset used in the main text of the paper. STAR maps 55 reads 
to a very well-known inter-chromosomal fusion junction between BCR and ABL genes (see   
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Figure S-2). Some of the reads are aligned with the 1st mate entirely in the BCR and the 2nd mate 
entirely in ABL, while other reads cross the actual chimeric junction between the exons of the two 
genes. 
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Figure S-2 

IGV browser snapshot of the BCR-ABL fusion junction with chimeric STAR alignments from K562 RNA-
seq data. The panel on the left shows BCR gene locus, while the panel on the right shows ABL gene 
locus. 

 

 

 

1.8. Comparison with the FM-BWT aligners 
Many popular short read aligners (BWA, bowtie, Soap2) utilize a compressed form of the suffix arrays - 
the FM-index based on the Burrows-Wheeler transform. While the compression allows for significant 
reduction of the memory usage, it also results in diminished efficiency of the string search operations. 
We compared the performance of STAR and bowtie, short un-spliced reads aligner based on FM-BWT, 
for the simplest string search operation - exact matching of the reads to the reference genome. 

We utilized the first mate sequences (76b) from our real RNA-seq dataset used in the main text. We 
aligned it to the human genome with bowtie requiring exact matches only (-v0) and at least two 
alignments (-k2). Because of the first limitation, as expected, bowtie could only align 53% of the reads - 
these reads map to the genome without mismatches, indels or splicing. These reads were extracted 
and aligned with both STAR and bowtie.  
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On this perfectly matching single-end read set, using the 1 thread, STAR aligns 976M reads per hour, 
compared to bowtie’s speed of 154M reads per hour. This demonstrates a factor of ≈6 speed 
advantage of the uncompressed suffix arrays over the compressed BWT arrays for the exact string 
match search. 

2. Simulated and experimental data analysis details 
The maximum intron size in all aligners was set at 500kb. The minimum intron size was set at 20 for 
STAR, Mapsplice and Tophat (RUM and GSNAP do not allow setting this parameter). The maximum 
number of mismatches was set at 5 per mate for GSNAP and Mapsplice, 10 per paired-end read for 
STAR. RUM and Tophat do not allow setting the maximum number of mismatches.  
 
Versions and command line arguments for all aligners are listed below: 
STAR 2.1.2d 
STAR --runThreadN <Nthreads> --genomeDir <genome_path>  
--readFilesIn Read1.fastq Read2.fastq --alignIntronMin 20                                    
--alignIntronMax 500000 -- outFilterMismatchNmax 10 
 
GSNAP 2012-07-03 
gsnap -B 5 -t <Nthreads>  -N 1  -A sam  --max-mismatches 5  
--pairmax-rna 500000 -D <genome_path>  -d <genome_name> Read1.fastq 
Read2.fastq 
 
MapSplice 1.15.2 
python2.6 mapsplice_segments.py  --threads <Nthreads> -u 
Read1_mapsplice.fa,Read2_mapsplice.fa -c <chromosomes_path> -B 
<genome_name> --min-intron-length 20 --max-intron-length 500000 -m 5 
-o output_path paired.cfg 
 
RUM 1.11  
perl RUM_runner.pl <rum.config> Read1.fastq,,,Read2.fastq <out_dir> 
<Nthreads> <out_prefix> -genome_only -maxIntron 500000 
 
TopHat 2.0.0 
tophat --solexa1.3-quals -p $1 -r172 --min-segment-intron 20 --max-
segment-intron 500000 --min-intron-length 20 --max-intron-length 
500000 <genome_name> Read1.fastq Read2.fastq 
Bowtie 2 was used as short read aligner for TopHat2. 
 

When the default number of mismatches is used for GSNAP (i.e. the --max-mismatches is 
omitted), it uses an “ultrafast algorithm” and achieves higher speed (5M read pairs per hour for 6 
threads, 8.6 read pairs per hour for 12 threads) and lower RAM usage (13GB). 
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For STAR, RUM and TopHat splice junctions were extracted from the junctions’ files generated by the 
aligners. Because GSNAP does not generate a list of detected junctions, and MapSplices’ list contained 
a large number of false positive junctions, we extracted GSNAP’s and MapSplice’s junctions from the 
their uniquely mapped alignments in .sam files using the (Grant, et al.)’s script sam2junctions.pl. 

All junctions were quantified with the number of the reads crossing it.  

The true junctions in the simulations were taken from (Grant, et al.)’s simulated_reads_junctions-
crossed_test1(2).txt file. The annotated junctions for the experimental data analysis were extracted 
from Gencode 7 (Harrow, et al., 2012) annotations. The non-canonical junctions (i.e. other than GT/AG, 
GC/AG and AT/AC, and reverse complementary of those) were “flushed” to the left to avoid the micro-
repeat ambiguity. The junctions predicted by the mappers were matched against the true junctions in 
the simulated data analysis, or to the annotated junctions for the experimental data analysis.  

For the calculation of the percentage of mapped reads, we defined mapped reads as those which had 
one or more alignment with more than 80% mapped bases. We computed the number of mapped 
bases length as a sum of “M” values in the CIGAR strings of the .sam files. 
 
For speed benchmarking, the test were run using the Linux “virtual disk” device /dev/shm for all the 
input, output and temporary files to avoid hard drive bandwidth and latency issues. 
 

2.1. TopHat 1.4.1 vs. TopHat2 2.0.0 
We tested the TopHat 1.4.1, which is the last version before the TopHat2 release. The ROC curves for 
the simulated dataset SIM1_TEST2 are presented in Figure S-3: 
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Figure S-3 

True positive rate vs. false positive rate (ROC-curve) for simulated RNA-seq data for STAR, TopHat, 
GSNAP, RUM and MapSplice. (a) TopHat 1.4.1; (b) TopHat2 2.0.0 (identical to Figure 2 of the main 
text). 

 

 
 
TopHat2’s accuracy is improved significantly compared to TopHat 1.4.1. Moreover, the mapping speed 
of TopHat 2.0.0 has increased by ≈30%.  
  

(a) (b) 
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2.2. Number of predicted junctions for simulated dataset SIM1_TEST2 
 
Figure S-4 

Numbers of predicted true and false junctions as a function of read count per junction for the 
simulated dataset SIM1_TEST2 from (Grant, et al.). See Figure 2 of the main text for the ROC curve. 
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2.3. Simulated dataset SIM1_TEST1 
In addition to the SIM1_TEST2 simulated dataset (Grant, et al.) which was used in the Fig. 2 of the main 
text, we compared the mappers using a low-error-rate SIM1_TEST1 dataset: 
 
Figure S-5 

(a) True positive rate vs. false positive rate (ROC-curve) for the simulated RNA-seq SIM1_TEST1 from 
(Grant, et al.) for STAR, TopHat2, GSNAP, RUM and MapSplic. 

(b) Numbers of predicted true and false junctions as a function of read count per junction for the 
simulated dataset SIM1_TEST1 from (Grant, et al.). 

  

(a) (b) 
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2.4. Experimental 2x50b RNA-seq data 
Figure S-6. 

Various accuracy metrics for splice junction detection in the experimental 2x50b RNA-seq data.  

The 2x50b reads were obtained by trimming the ends of the 2x76b reads from experimental dataset 
used in the Section 3.2 of the main text (Fig. 2). 

The color-coding scheme for mappers is the same in all plots. X-axis in plots (a), (b), (d) and (e) is the 
detection threshold defined as the number of reads mapped across each junction, i.e. each point with 
the X-value of N represents all junctions that are supported by at least N reads mapped by a given 
aligner. (a) Total number of detected junctions, annotated (solid lines) and unannotated (dashed lines); 
(b) percentage of detected junctions that are annotated; (c) pseudo-ROC curve: percentage of all 
annotated junctions that are detected vs. percentage of detected junctions that are unannotated; (d) 
number of unannotated junctions detected by at least two mappers (solid lines) and number of 
unannotated junctions detected exclusively by only one mapper (dashed lines); (e) percentage of 
detected unannotated junctions that are detected exclusively by only one mapper; (f) pseudo-ROC 
curve: percentage of unannotated junctions that are detected by at least two mappers vs. percentage 
of detected unannotated junctions that are detected exclusively by only one mapper. 

 
  



14 

 

3. Non-parametric Irreproducible Discovery Rate (npIDR) 
npIDR ascertains reproducibility of the detection of genomic elements (such as splice junctions, 

exons, transcripts etc.) in RNA-seq experiment with biological replicates, referred to as 1 and 2 below. 
First, a common set of elements has to be created for the two bio-replicates. This can be a set of 
annotated elements, or a conjoint set of de novo detected elements from the two bio-replicates.  Each 
of the elements in the common set is quantified with RNA-seq reads separately against each bio-
replicate. We found that the best quantifier for measuring reproducibility is the plain number of RNA-
seq reads supporting each element, rather than normalized values such as FPKM, owing to the discrete 
nature of RNA-seq signal which, at low levels, is dominated by the sampling noise. The elements in 
each bio-replicate are binned according to their signal, and for all bins the npIDR1in2 is calculated as the 
proportion of elements in each bin in replicate 1 that have exactly zero signal (i.e. not detected) in 
replicate 2. Similarly, the npIDR2in1 is calculated as the proportion of elements in each bin in replicate 2 
that have exactly zero signal (i.e. not detected) in replicate 1. If quantification differences between bio-
replicates are caused entirely by random noise, the npIDR1in2 and npIDR2in1 values should be close to 
each other. In practice, the difference in sequencing depths (i.e. numbers of mapped reads) of the two 
bio-replicates causes a systematic bias, and to correct for it we calculate the final npIDR value for each 
signal bin as the average of npIDR1in2 and npIDR2in1.  A typical example of npIDR dependence on the 
signal for de novo splice junctions as elements is shown in Figure S-8. Assuming that reproducibility 
within a sample of junctions with the same signal is equivalent to the reproducibility of individual 
junctions in an ensemble of experiments, the npIDR determines the probability of an element not to be 
detected in another experiment of the same depth as bio-replicate 1 or 2. We can also infer the npIDR 
for an experiment of a combined depth of replicates 1 and 2, by re-quantifying each element with the 
“pooled” signal value from the two bio-replicates. If signal is the number of RNA-seq reads per 
element, then the pooled value is calculated as a sum of the signals in two bio-replicates, for a 
normalized signal such as FPKM this could be an average value, or a maximum value. The npIDR is then 
assigned to each element according to its pooled signal value, and the npIDR vs. signal dependence 
calculated in the first step. 
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Figure S-7 

Cumulative number of annotated and novel GT/AG junctions supported by at least a given (X-axis) 
number of reads per junction in H1ES RNA-seq data. Only staggered reads, i.e. reads with distinct 5’ or 
3’ loci, are counted. 
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Figure S-8 

Percentage of reads present in replica 1 with a given (X-axis) read count and not detected in 
replica 2, and vice versa. The Average curve represents the npIDR as a function of read count. 
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4. Running STAR with annotated junctions database 
STAR can utilize annotated splice junctions loci to improve sensitivity of the splice junction detection. 
STAR incorporates annotated junction sequences into the suffix array and searches the seeds that cross 
the junctions simultaneously with the seeds that map contiguously to the genome. Stitching and 
scoring is also done simultaneously for spliced and contiguous seeds, thus allowing detection of 
annotated and novel junctions in one mapping pass. This procedure makes STAR more sensitive to 
splicing events that involve short sequence overhangs on either side of a junction. 

If we supply Gencode 7 (Harrow, et al., 2012) annotations to STAR, it finds ~5 million more annotated 
splicing events (i.e. reads crossing annotated junctions), increasing the number of spliced read by 
~50%. Importantly, ~6 thousand more annotated junctions are detected (see Figure S-9). 
Another option for supplying the splice junctions’ loci is to run 2nd pass of STAR alignments utilizing the 
junctions found in the 1st de novo step. In this case new junctions will not be discovered, however 
more spliced reads crossing the previously detected junctions will be found. 

Figure S-9 

Pseudo-ROC curve for STAR+annotation and STAR ‘de novo’ runs: % of all annotated junctions that are 
detected vs. % of detected junctions that are unannotated. 
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5. Mapping long mRNA sequences 
Human mRNA sequences were downloaded from the UCSC Genome Browser: 

http://hgdownload.cse.ucsc.edu/goldenPath/hg19/bigZips/mrna.fa.gz 

(the file was “Last modified” on 06-Oct-2012). 

First 100,000 mRNA sequences between 0.5kb and 5kb long were mapped to the human genome with 
BLAT and STAR. The mean length of the transcripts was ~2kb. BLAT 3.4 was run with the default 
parameters since they are optimized for alignment of long EST/mRNA sequences: 

blat hg19.fa mrna.2012-10-06.500to5000_UpperCase.100k.fa blat.psl.out 

The “over-occuring tile” file 11.ooc was generated before the alignment run with: 

blat -makeOoc=11.ooc hg19.fa xxx yyy 

 STAR was compiled with “make STARlong” command allowing allocation of large arrays and was run 
with the following parameters:  

STAR --runThreadN 1   --outFilterMismatchNmax 100    
--seedSearchLmax 30   --seedSearchStartLmax 30    
--seedPerReadNmax 100000   --seedPerWindowNmax 100    
--alignTranscriptsPerReadNmax 100000    
--alignTranscriptsPerWindowNmax 10000 
--genomeDir hg19  
--readFilesIn mrna.2012-10-06.500to5000_UpperCase.100k.fa 
 
For each read, the one best alignment was selected for BLAT and for STAR. Reads were considered 
mapped if ≥80% of their lengths were aligned to the genome. 

The comparison of STAR and BLAT alignments is presented in Table S-1 and Figure S-10. Of the 100,000 
reads, STAR aligns 96,557 reads (96.6%), slightly lower than BLAT’s 97,441 (97.5%). STAR produces 
longer alignments more often than BLAT: STAR’s alignments are longer than BLAT’s for 9,276 reads, 
while STAR’s alignments are shorter than BLAT’s for 5,734 reads.  

Next we compared splice junction (or intron) chains for STAR and BLAT alignments. STAR yields 
alignments with at least one junction for 80,459 reads compared with BLAT’s 81,884 reads. STAR yields 
slightly larger number of annotated junction chains: 62,359 of STAR’s and 61,881 of BLAT’s spliced 
reads have intron chains with all the junctions annotated in Gencode 13 (Harrow, et al., 2012).  

Figure S-10 shows the numbers of reads with fully annotated junction chains as a function of number 
of junctions per read. STAR finds more alignments with longer annotated junction chains than BLAT: 

http://hgdownload.cse.ucsc.edu/goldenPath/hg19/bigZips/mrna.fa.gz
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overall, STAR detected 502,830 splices in reads with fully annotated junction chains compared to 
495,470 splices for BLAT. 

BLAT’s and STAR’s junction chains are identical for 63,142 of all spliced reads and 57,038 of reads with 
fully annotated chains, which demonstrates a good overall agreement between STAR and BLAT 
alignments. 

The mapping time was benchmarked on the same server as described in the section 3.3 of the main 
text. Only one thread was used for both STAR and BLAT since BLAT is not multi-threaded. STAR 
demonstrated a 160-fold mapping speed advantage over BLAT: to map 100,000 reads BLAT spent 12 
hours, while STAR spent only 4.5 min. 

STAR’s and BLAT’s output files, as well scripts used to process the data, can be downloaded from: 

ftp://ftp2.cshl.edu/gingeraslab/tracks/STARpaper/STARpaper_mRNA.tgz 

 

Table S-1 

mRNA mapping statistics for STAR and BLAT. 

  STAR BLAT 
All reads 100,000 

Mapped reads (>=80% of read length aligned) 96,557 97,441 
Alignments that are longer than the other aligner's 9,276 5,734 

Reads with one or more splice junctions 80,459 81,884 
Reads with fully annotated junction chains 62,359 61,881 

Number of junctions in fully annotated introns chains 502,830 495,470 
Reads with identical junction chains 63,142 

Reads with identical annotated junction chains 57,038 
 

  

ftp://ftp2.cshl.edu/gingeraslab/tracks/STARpaper/STARpaper_mRNA.tgz
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Figure S-10 

Number of reads with fully annotated junction chains as a function of number of junctions per read for 
STAR’s and BLAT’s alignments of mRNA sequences. 
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6. DATA ACCESS 
GEO: GSE38886 (Roche 454 sequencing) 
GEO: GSE30567 (Illumina long RNA-Seq) 
 

The Illumina long RNA-seq data utilized in this paper can also be downloaded from the UCSC 
ENCODE hub: 

K562: 

http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeCshlLongRnaSeq/wgEnc
odeCshlLongRnaSeqK562CellPapFastqRd1Rep1.fastq.gz 

http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeCshlLongRnaSeq/wgEnc
odeCshlLongRnaSeqK562CellPapFastqRd2Rep1.fastq.gz 

H1ES: 

http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeCshlLongRnaSeq/wgEnc
odeCshlLongRnaSeqH1hescCellPapFastqRd1Rep1.fastq.gz 

http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeCshlLongRnaSeq/wgEnc
odeCshlLongRnaSeqH1hescCellPapFastqRd2Rep1.fastq.gz 

http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeCshlLongRnaSeq/wgEnc
odeCshlLongRnaSeqH1hescCellPapFastqRd1Rep2.fastq.gz 

http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeCshlLongRnaSeq/wgEnc
odeCshlLongRnaSeqH1hescCellPapFastqRd2Rep2.fastq.gz 

 
HUVEC: 
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeCshlLongRnaSeq/wgEnc

odeCshlLongRnaSeqHuvecCellPapFastqRd1Rep1.fastq.gz 
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeCshlLongRnaSeq/wgEnc

odeCshlLongRnaSeqHuvecCellPapFastqRd2Rep1.fastq.gz 
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeCshlLongRnaSeq/wgEnc

odeCshlLongRnaSeqHuvecCellPapFastqRd1Rep2.fastq.gz 
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeCshlLongRnaSeq/wgEnc

odeCshlLongRnaSeqHuvecCellPapFastqRd2Rep2.fastq.gz 
 

  

http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeCshlLongRnaSeq/wgEncodeCshlLongRnaSeqK562CellPapFastqRd1Rep1.fastq.gz
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeCshlLongRnaSeq/wgEncodeCshlLongRnaSeqK562CellPapFastqRd1Rep1.fastq.gz
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeCshlLongRnaSeq/wgEncodeCshlLongRnaSeqK562CellPapFastqRd2Rep1.fastq.gz
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeCshlLongRnaSeq/wgEncodeCshlLongRnaSeqK562CellPapFastqRd2Rep1.fastq.gz
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeCshlLongRnaSeq/wgEncodeCshlLongRnaSeqH1hescCellPapFastqRd1Rep1.fastq.gz
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http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeCshlLongRnaSeq/wgEncodeCshlLongRnaSeqHuvecCellPapFastqRd2Rep1.fastq.gz
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