
 - 1 - 

Stochastic Boolean Networks: An Efficient Approach 
to Modeling Gene Regulatory Networks 
 
Jinghang Liang1, Jie Han1§ 

 

1Department of Electrical and Computer Engineering, University of Alberta, 

Edmonton, AB, Canada T6G 2V4 

 

§Corresponding author 

 

Email addresses: 

JL: Jinghang@ualberta.ca 

JH: jhan8@ualberta.ca  



 - 2 - 

Additional file 1.  

Stochastic Logic using Non-Bernoulli Sequences 

1. Stochastic Logic  

In stochastic computation, signal probabilities are encoded into binary bit streams, i.e., 

serially in the time domain. Randomly generated bit streams are used to encode signal 

probabilities; a specific probability is represented by a number of bits set to a value 

that is usually in proportion to the mean number of 1’s in a bit stream. Fig. S1 shows a 

stochastic encoding and an inverter. As Boolean operations can be mapped to 

arithmetic operations, the inverter probabilistically implements a complement 

operation. Note that in Fig. S1, a sequence length of 10 bits is used for illustration 

purposes; a larger sequence length is usually needed in practice.  

 

Fig. S1. An inverter and a stochastic encoding. 

Stochastic computation transforms Boolean logic operations into probabilistic 

computations in the real domain. Although each binary bit is processed by a Boolean 

gate, signal operations are no longer Boolean in nature, but they are arithmetic 

computations by stochastic logic. Bernoulli sequences are often used as binary bit 

streams in stochastic computation [1, 2]. In a Bernoulli sequence, every bit is 

independently generated with a probability p. The mean and variance of the number 

of 1’s in an N-bit Bernoulli sequence are respectively given by  

𝜇 = 𝑁𝑝,                                                           (1) 

and 



 - 3 - 

𝑣 = 𝑁𝑝(1 − 𝑝).                                                  (2) 

For the inverter of Fig. S1, if the input probability is a, the mean number of 1’s in its 

output sequence is 

𝜇1 = 𝑁(1 − 𝑎),                                             (3) 

and the variance is 

𝑣1 = 𝑁𝑎(1 − 𝑎).                                            (4) 

This is the same as the variance of the input sequence. 

Complex arithmetic operations can be implemented by simple stochastic logic. For 

instance, multiplication can be implemented by an AND gate, as shown in Fig. S2(b). 

In this multiplication, the input binary streams must not be correlated for a correct 

computation. However, the bit-wise dependencies between the input random binary 

streams can be used to yield new stochastic logic models that account for the 

statistical correlation in input signals. This is shown in Fig. S2(a) as a general 

stochastic model of AND in which the two input signals may be correlated.  

 

Fig. S2. Stochastic AND logic: (a) the general model; (b) the special case of 

multiplication, when the two inputs are statistically independent. 

If the inputs of the AND are two independent Bernoulli sequences with generating 

probabilities a and b respectively, the mean number of 1’s in the output sequence is:  

𝜇2 = 𝑁𝑎𝑏,                                                      (5) 

and the variance is given by: 



 - 4 - 

𝑣2 = 𝑁𝑎𝑏(1 − 𝑎𝑏).                                           (6) 

     For the AND gate in Fig. S2(a) with possibly correlated inputs, 

              𝑃(𝐶 = 1) = 𝑃(𝐴 = 1,𝐵 = 1) = 𝑃(𝐴 = 1)𝑃(𝐵 = 1|𝐴 = 1).                 (7) 

Let 𝑎 = 𝑃(𝐴 = 1), 𝑏 = 𝑃(𝐵 = 1) and 𝑝𝑐 = 𝑃(𝐵 = 1|𝐴 = 1); then 

𝑃(𝐶 = 1) = 𝑎𝑝𝑐.                                                  (8) 

     The use of Bernoulli sequences as inputs results in a Bernoulli sequence at the 

output with a generating probability given by (8); therefore, the mean number of 1’s 

in the output sequence and its variance are given by: 

𝜇2,𝑔 = 𝑁𝑎𝑝𝑐,                                                     (9) 

and 

𝑣2,𝑔 = 𝑁𝑎𝑝𝑐(1 − 𝑎𝑝𝑐),                                       (10) 

respectively. 

     The use of Bernoulli sequences however incurs a large computational overhead 

that severely limits its application for an efficient analysis. This aspect is addressed 

through the use of non-Bernoulli sequences, as discussed next. 

2. Non-Bernoulli Sequences 

     In this work, non-Bernoulli sequences are used for reducing the computational 

complexity and inaccuracy. Specifically, each initial input stochastic sequence 

contains a fixed number of 1’s and the positions of the 1’s are determined by a 

random permutation. For a given probability p and a sequence length of N bits, the 

number of 1’s to be generated is given by Np. The output distributions of the inverter 

and AND gate when non-Bernoulli sequences are used as inputs, are treated in more 

detail next.  



 - 5 - 

     For an inverter, assume that the input has a probability of a to be “1”; so Na is the 

number of 1’s in the input sequence of N bits. Then the expected value of 1’s in the 

output sequence is given by: 

𝜇1′ = 𝑁(1 − 𝑎).                                               (11) 

Since there is no variation in the input, the variance in the output is considered to be 0, 

i.e.,  

𝑣1′ = 0.                                                    (12) 

     For an AND gate, the use of the non-Bernoulli sequences resembles von 

Neumann’s NAND multiplexing technique, as discussed in [3, 4] for fault-tolerant 

logic design. The following Lemma shows that its output follows approximately a 

Gaussian distribution when the sequence length N is large. 

Lemma 1: For an AND gate, assume that the two inputs are “1” with probabilities a 

and b and represented by non-Bernoulli sequences of N bits (as random permutations 

of fixed numbers of 1’s and 0’s). For a large N, the output sequence follows a 

Gaussian distribution with a mean number of 1’s given by: 

𝜇2′ = 𝑁𝑎𝑏,                                                    (13) 

and a variance: 

𝑣2′ = 𝑁𝑎(1 − 𝑎)𝑏(1 − 𝑏).                                   (14) 

Proof: The two input probabilities a and b give r=aN and s=bN as the numbers of 1’s 

in the input sequences. In these two inputs, the numbers of possible permutations are: 

𝐶𝑎 = �𝑁𝑟� = 𝑁!
𝑟!∗(𝑁−𝑟)!

 ,                                       (15) 

and  

𝐶𝑏 = �𝑁𝑠 � = 𝑁!
𝑠!∗(𝑁−𝑠)!

 ,                                        (16) 



 - 6 - 

respectively. Assume that the AND gate produces t 1’s in the output sequence; then, 

the number of permutations that causes this occurrence, can be obtained by 

combinatorial analysis [3, 4]. This leads to: 

𝐶𝑜 = �𝑁𝑡 � ∗ �
𝑁 − 𝑡
𝑟 − 𝑡 � ∗ �

𝑁 − 𝑟
𝑠 − 𝑡 � = 𝑁!

𝑡!∗(𝑟−𝑡)!(𝑠−𝑡)!(𝑁−𝑟−𝑠+𝑡)!
              (17) 

The probability that t 1’s result in the output sequence, is given by the number of 

output permutations divided by the total possible number of input permutations, i.e.,  

𝑃(𝑡) = 𝐶𝑜
𝐶𝑎∗𝐶𝑏

= 𝑟!(𝑁−𝑟)!𝑠!(𝑁−𝑠)!
𝑡!(𝑟−𝑡)!(𝑠−𝑡)!(𝑁−𝑟−𝑠+𝑡)!𝑁!

.                        (18) 

Assume that the expected output probability is z, and therefore 

𝑧 = 𝑡
𝑁

.                                                         (19) 

As per [3], the application of Stirling’s formula results in: 

𝑃(𝑧)~ 1
√2𝜋𝑁

�𝛽𝑒−𝜃𝑁,                                          (20) 

where 

 𝛽~ 1
𝑎(1−𝑎)𝑏(1−𝑏)

,                                              (21) 

 𝜃~ (𝑧−𝑎𝑏)2

2𝑎(1−𝑎)𝑏(1−𝑏)
.                                             (22) 

(20), (21) and (22) indicate that the output sequence follows approximately a 

Gaussian distribution with a mean number of 1’s given by (13) and a variance given 

by (14).                                                         □ 

3. Non-Bernoulli vs. Bernoulli Sequences 

Next, the comparison between the use of Bernoulli and non-Bernoulli input sequences 

in stochastic logic is pursued. For an inverter, it is easy to find that (11) = (3) and (12) 

= 0. This indicates that the use of non-Bernoulli input sequences results in a 

deterministic output value equal to the mean value of the one by using Bernoulli input 

sequences. For an AND gate, the following theorem applies for independent inputs.  



 - 7 - 

Theorem 1: Compared to the case when Bernoulli sequences are used to represent the 

initial input probabilities, the use of large non-Bernoulli sequences as random 

permutations of fixed numbers of 1’s and 0’s results in an output sequence with the 

same mean number of 1’s and a smaller variance for an AND gate when its inputs are 

independent.  

Proof: From Lemma 1, it can be seen that (13) = (5) and 

𝑣2 − 𝑣2′ = 𝑁𝑎𝑏(1 − 𝑎𝑏) − 𝑁𝑎(1 − 𝑎)𝑏(1 − 𝑏) = 𝑁𝑎𝑏(𝑎(1 − 𝑏) + 𝑏(1 − 𝑎)) ≥ 0,  

(23) 

so proving the theorem.                                                         □ 

     The general case of correlated inputs is considered as follows. When non-Bernoulli 

sequences are used as inputs, the random permutation allows for some randomness in 

the inputs, albeit with a correlation between them. Without loss of generality, assume 

that input A is first generated; input B is then generated conditionally on A. For the 1’s 

in the sequence of A, further assume that the corresponding bits in B are generated as 

a Bernoulli sequence with probability 𝑝𝑐. For the 0’s in the sequence of A, 

subsequently, the number of 1’ in the corresponding bits in B is actually determined 

due to the nature of the non-Bernoulli sequence used to represent input B. Since the 

number of 1’s in the sequence of A is Na, the mean number of 1’s in the 

corresponding bits in B and its variance are given by:  

𝜇2,𝑔
′ = 𝑁𝑎𝑝𝑐,                                                   (24) 

and 

𝑣2,𝑔
′ = 𝑁𝑎𝑝𝑐(1 − 𝑝𝑐).                                        (25) 

The combinations of 1’s in inputs A and B produce the 1’s in the output sequence, so 

the mean number of 1’s at the output and the variance are given by (24) and (25) 



 - 8 - 

respectively for an AND gate with non-Bernoulli input sequences that may be 

correlated. 

     Hence, it can be seen that (9) = (24) and from (10) and (25),  

𝑣2,𝑔 − 𝑣2,𝑔
′ = 𝑁𝑎𝑝𝑐(1 − 𝑎𝑝𝑐) − 𝑁𝑎𝑝𝑐(1 − 𝑝𝑐) =  𝑁𝑎𝑝𝑐2(1 − 𝑝𝑐) ≥ 0.     (26) 

This indicates that, when compared to Bernoulli input sequences, the use of non-

Bernoulli input sequences as random permutations of fixed numbers of 1’s and 0’s 

results in an output sequence with the same mean number of 1’s and a smaller 

variance for an AND gate when its inputs may be correlated.  

     Any logic function can be implemented with inverters and AND gates; so, a 

smaller variance in the output of AND gates (as achieved by using the non-Bernoulli 

inputs) will result in a smaller variance in the output of a function implemented with 

inverters and AND gates. Also, the same mean value results from the use of non-

Bernoulli and Bernoulli inputs. Therefore in a logic network, the use of non-Bernoulli 

and Bernoulli sequences as initial inputs will produce evaluation results with the same 

mean, but different variance; the former method results in a smaller variance than the 

latter method.  

     We conjecture this result as follows: compared to the case when Bernoulli 

sequences are used to represent the initial input probabilities, the use of large non-

Bernoulli sequences as random permutations of fixed numbers of 1’s and 0’s results 

in an output sequence with the same mean number of 1’s and a smaller variance for a 

combinational logic network.  

4. Comparison of the SBN and Monte Carlo (MC) Methods  

The SBN and Monte Carlo (MC) methods are first used to compute the state transition 

matrices for a randomly-generated 5-gene network. The obtained matrices (𝑨𝑺𝑩𝑵 and 

𝑨𝑴𝑪) are then compared to the result obtained using the analytical approach in [5] 



 - 9 - 

(𝑨𝑮𝑹𝑵). Fig. S3 shows the accuracies of 𝑨𝑺𝑩𝑵 and 𝑨𝑴𝑪 against 𝑨𝑮𝑹𝑵, given by the 

measures of norm 1, norm 2 and norm infinity of (𝑨𝑮𝑹𝑵 − 𝑨𝑺𝑩𝑵) and (𝑨𝑮𝑹𝑵 − 𝑨𝑴𝑪). 

In Fig. S3, (a), (b) and (c) show the simulation results of 1000 SBN evaluations with a 

sequence length of 10000 binary bits, while (d), (e) and (f) show the simulation results 

of 1000 MC experiments of each containing 10000 simulations.  

It can be seen that the variations are smaller in the state transition matrices computed 

using the SBN technique than in those obtained using the MC method, indicated by a 

better proximity of the SBN results to the analytical result measured in all three norms.  

 

Fig. S3. Probability distribution histograms of the SBN and MC methods, 

measured by different norms of (𝑨𝑮𝑹𝑵 − 𝑨𝑺𝑩𝑵)  and (𝑨𝑮𝑹𝑵 − 𝑨𝑴𝑪) . Using 

approximations of Gaussian distributions, the mean values and standard 

deviations are (a) 𝝁𝒂 = 0.0162, 𝒗𝒂 = 0.0027, (b) 𝝁𝒃 = 0.0103, 𝒗𝒃 = 0.0016, (c) 𝝁𝒄 = 

0.0252, 𝒗𝒄 = 0.0042, (d) 𝝁𝒅 = 0.0359, 𝒗𝒅 = 0.0061, (e) 𝝁𝒆 = 0.0180, 𝒗𝒆 = 0.0026, (f) 

𝝁𝒇 = 0.0325, 𝒗𝒇 = 0.0046. 

The time-frame expanded SBN technique resembles the Markov Chain Monte Carlo 

(MCMC) method in the sense that both methods use random vectors in the simulation. 

In Table S1, the runtime for the T cell network [6] is shown for the time-frame 



 - 10 - 

expanded SBN technique to obtain a steady state, compared to the MCMC method. 

Due to the use of non-Bernoulli sequences of random permutations of fixed numbers 

of 1’s and 0’s, the SBN requires fewer pseudo-random number generations at each 

time frame and the computed matrix at each time frame is more accurate (as shown in 

Fig. S3). Therefore, the state of a network converges faster to a steady state in a time-

frame expanded SBN than using the MCMC method. These results indicate that the 

proposed SBN approach is more accurate and more efficient than a random sampling 

based method (such as the MC simulation) in the computation of state transition 

matrices and the evaluation of steady state distributions. 

Table S1. Time consumption of the time-frame expanded SBN technique for the 
T cell network for different threshold values, compared to the MCMC method. 

   

Threshold 
value 

(norm 2) 

Sequence 
length 
(bits) 

Perturbation 
rate 

SBN MCMC 
No. of 

convergence 
cycles  

Time (s) 
No. of 

convergence 
cycles  

Time (s) 

0.001 100,000 
0.0001 84 56.178200 196 149.218028 
0.001 59 39.673542 106 80.726064 
0.01 34 23.693967 49 37.285877 

0.01 10,000 
0.01 13 0.897627 14 1.111401 
0.001 24 1.521310 26 2.028786 

0.0001 31 1.947808 30 3.515963 

References 

1. B. R. Gaines, Stochastic Computing Systems, Advances in Information 

Systems Science, Vol. 2, pp. 37-172, 1969.  

2. B. Brown and H. Card, Stochastic neural computation I: Computational 

elements, IEEE Tran. Computers, vol. 50, pp. 891–905, Sept. 2001.  

3. J. von Neumann, Probabilistic logics and the synthesis of reliable 

organisms from unreliable components, Automata Studies, Shannon C.E. & 

McCarthy J., eds., Princeton University Press, pp. 43-98, 1956.  

4. Jie Han, Fault-Tolerant Architectures for Nanoelectronic and Quantum 

Devices, Universal Press, Veenendaal, The Netherlands, 2004. A Ph.D. 



 - 11 - 

dissertation of the Delft University of Technology, 1-135. ISBN: 90-9018888-

6 

5. Zhang, S. et al: Simulation study in probabilistic Boolean network models 

for genetic regulatory networks. Int. J. Data Min. 2007, 1:217-240. 

6. Martin, S., Zhang, Z., Martino, A. and Faulon, J-L.: Boolean dynamics of 

genetic regulatory networks inferred from microarray time series data. 

Bioinformatics, 2007, 23(7): 866-874. 


	Jinghang Liang1, Jie Han1§
	1. Stochastic Logic
	2. Non-Bernoulli Sequences
	3. Non-Bernoulli vs. Bernoulli Sequences
	4. Comparison of the SBN and Monte Carlo (MC) Methods
	References

