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Figure S1. Summary of PLCγ1 phosphorylation sites and assessment of their 
importance for activation by FGFR1, related to Figure 1 
 (A) LC-MS/MS phosphopeptide analysis (LTQ Velos Orbitrap mass spectrometer) of 
PLCγ1 was performed following in vitro phosphorylation by FGFR1 kinase domain. 
Peptides are derived from either trypsin or Lys-C based workflows. Analysis of 
MS/MS was performed using Proteome Discoverer v1.2, Mascot v2.2. and Scaffold 
v3.0.  
(B) The effect of point mutations on basal and FGFb stimulated PLCγ1 activity were 
measured in PAE cells transfected with pTriEx4-PLCγ1wt and constructs containing 
indicated point mutations. Western blotting was used to show equal expression 
(inset). SD is represented by error bars. Data are representative for three independent 
experiments.  



 

 
Figure S2. Overlay of NMR spectra and γSA assignments, related to Figure 2 
 (A) The two-dimensional 1H-15N HSQC spectra of 15N-labelled γSA (grey) overlaid 
with the spPH (cyan, left), nSH2 (blue, middle) and SH3 (red, right) spectra. (B) The 
two-dimensional 1H-15N HSQC spectra of 15N-labelled γSA (grey) overlaid with the 
cSH2 (green) spectra (left). The two-dimensional 1H-15N HSQC spectra of 15N-
labelled γSA that was peptide saturated (1:10 stoichiometric excess of 
NPGFpYVEANPMP (PLCγ1 pY-peptide) and DNDpYYIIPLPDPK (PDGFRβ pY-
peptide)) (purple) overlaid with the cSH2 peptide saturated (1:10 stoichiometric 
excess of NPGFpYVEANPMP (PLCγ1 pY-peptide)) (yellow) spectra (right). (C) The 
two-dimensional 1H-15N HSQC spectra of 15N-labelled γSA (grey) partially backbone 
assigned.  



 

 

Figure S3. SAXS data for different constructs and fitting of multiple structures, 
related to Figure 3 
 (A) Summary model showing the positions of the domains within γSA as predicted 
by simultaneous 5-fit MONSA modelling. Inset shows the MONSA model overlaid 
with the γSA envelope produced with DAMMIN. (B) Ab initio MONSA models of 
γSA compared to γSA∆SH3 with the SH3 (red) and γSA∆SH3 (grey) regions shown 
(left). Ab initio MONSA models of γSA compared to γSA-Sumo with the sumo 
(brown) and γSA (grey) regions shown (middle). Ab initio MONSA models of γSA 
compared to γSA/FGFR1 complex with the FGFR1 (yellow) and γSA (grey) regions 
shown (right). 



 

 
 

Figure S4. Diagrams illustrating flexibility and range of possible distances 
between different domains within the γSA, related to Figure 3 
 Radius of gyration, Dmax distributions and Log of scattered intensity versus Q of the 
pool (blue line) and selected subsets (red line) and experimental SAXS data (cyan 
circles) for the Ensemble Optimization Method (EOM) analysis of γSA. Assuming a 
fully flexible γSA (A), restrained by deduced interface between spPH and cSH2 (B). 
Restrains imposed by spPH/cSH2 interaction were consistent with the EOM analysis 
of SAXS data for the spPH-cSH2 construct. However, based on a similar analysis of 
relevant constructs, SH3/linker interactions suggested by NMR appear to have less 
impact. In both A and B, the inter-domain linkers have been considered as fully 
flexible, which can be considered as one extreme scenario of the actual situation.  



 

 
 
Figure S5. Preferences of peptide binding to SH2 domains, related to Figure 4 
 (A) NMR titration of nSH2-cSH2wt with PDGFRβ pY-peptide 
(DNDpYYIIPLPDPK). An overlay of the two-dimensional 1H-15N HSQC spectra of 
15N-labelled nSH2-cSH2wt are shown in purple, blue, cyan, green, orange and red at 
0, 0.2, 0.6, 1.0, 1.6 and 3.0 equivalents (molar ratio of peptide to protein) respectively. 
(B) Shows the excerpt of the enclosed region of the spectrum in (A) with assignment 
of selected peaks from the nSH2 and cSH2 domains. (C) Quantification of either the 
peak intensities (for nSH2 residues) or the chemical shift perturbations (for cSH2 
residues) of selected peaks from (B). (D) NMR titration of nSH2-cSH2wt with PLCγ1 
pY-peptide (NPGFpYVEANPMP). An overlay of the two-dimensional 1H-15N HSQC 
spectra of 15N-labelled nSH2-cSH2wt are shown in purple, blue, cyan, green, yellow, 
orange and red at 0, 0.2, 0.7, 1.0, 1.8, 2.1 and 3.0 equivalents (molar ratio of peptide 
to protein) respectively. (E) Shows the excerpt of the enclosed region of the spectrum 
in (D) with assignment of selected peaks from the nSH2 and cSH2 domains. (F) 
Quantification of either the peak intensities (for nSH2 residues) or the chemical shift 
perturbations (for cSH2 residues) of selected peaks from (E). 



 

 
 

 

 

Figure S6. Further analysis of cSH2 and catalytic domain mutations in COS 
cells, related to Figure 5 
 The effect of point mutations on basal and EGF stimulated PLCγ1 activity were 
measured in COS7 cells transfected with pTriEx4-PLCγ1wt and constructs containing 
indicated point mutations in cSH2 domain (A) and catalytic domain (B). For 
comparison of wild type with D1019K mutation in the catalytic domain, PLC activity 
measured for a range of expression levels (plasmid concentrations are indicated) is 
shown (left panel). Western blotting was used to show protein expression (insets). SD 
is represented by error bars. 



 

 



 

SUPPLEMENTAL EXPERIMENTAL PROCEDURES 

 

Cloning, expression and purification of recombinant proteins 

Construction of vectors- Full-length human PLCγ1 was cloned using Gateway 

technology (Invitrogen) into pDONR207 (Invitrogen) and after sequencing 

transferred by the LR reaction into a Gateway modified version of pTriEx4 

(Novagen). These constructs were used primarily for transfections of COS7, PAE and 

293F cells and were expressed with an N-terminal Hisx6 tag followed by an S-tag that 

was used for protein purification and detection of protein expression in Western 

blotting respectively. Core constructs of PLCγ1 comprising amino acids 13-

1215, ∆488-933, H335A were also cloned with Gateway technology into pTriEx4 (via 

pDONR207) and used in transfections of 293F suspension cells.  In this case an HRV 

3c protease recognition sequence was included to allow a native N-terminus (amino 

acid residue 13) after cleavage. All specific array and smaller constructs were cloned 

into vector pOPINS (Oxford Protein Production Facility) using In-Fusion technology 

(Clontech). The exceptions to this were the SH3 domain (791-851, C794S) and spPH 

domain (488-933, ∆530-864) that were cloned into pTriEx4 using Ek/LIC cloning 

(Novagen) and incorporated an N-terminal TeV protease recognition sequence.  

 

A synthetic ORF encoding for the human FGFR1 kinase domain (456-774, L457V, 

Y463F, C488A, Y583F, C584S, Y585F) was prepared by EuroFins MWG. A 

construct was prepared by splicing PCR consisting of the following elements in order, 

2 x StrpII tags, Sumo Star domain, FGFR1 (464-774) and a 10 x His-tag. This 

construct was cloned into pTriEx6 using 3C/LIC cloning (Novagen). The resulting 

protein was designated as FGFR1-3p on account of the fact that three tyrosines only 



 

can be phosphorylated in this construct (Y653, 654 and 766) The FGFR1opt (456-

774) was also cloned into pOPINS using In-Fusion cloning and the active site 

tyrosines, 653 and 654, were mutated to phenylalanine residues. This protein was 

designated as FGFR1-1p since only one tyrosine, Y766, can be phosphorylated in this 

construct. 

 

All constructs for cloning were PCR amplified using KOD Hot Start polymerase 

(Novagen) following manufacturer’s protocols. All PLCγ1 and FGFR1 variants with 

deletions and point mutations were introduced by site-directed mutagenesis 

(QuikChange PCR mutagenesis, Stratagene). All clones ORFs were fully sequenced 

after manipulation to ensure sequence fidelity. 

 

 Expression of recombinant proteins – For expression of Specific Array and smaller 

domain constructs of PLCγ1 from pTriEx4 or pOPINS vector backbones in rich 

media. Constructs were transformed into E.coli strain C41 (DE3). Colonies were 

inoculated into 500 ml of 2xYT media and grown to an OD600 of 0.4. Cultures were 

cooled to 25 °C for 2 hours and expression was induced with 100 µM IPTG for 

approximately 16 hours. Bacteria were pelleted and stored at -20 °C until processed. 

 

For expression of FGFR1 containing constructs from the pTriEx6 or pOPINS vector 

backbones in rich media. Constructs were transformed into E.coli strain C41 (DE3) 

harbouring a construct expressing λ-phosphatase. Colonies were inoculated into 500 

ml of terrific broth and grown to an OD600 of 1.0. Cultures were cooled to 15 °C and 

expression was induced with 100 µM IPTG for approximately 16 hours. Bacteria 

were pelleted and stored at -20 °C until processed. 



 

 

For expression of Specific Array and smaller domain constructs of PLCγ1 from 

pTriEx4 or pOPINS vector backbones in minimal medium (for 15N or 15N/13C 

labeling). Constructs were transformed into E.coli strain C41 (DE3). Colonies were 

inoculated into 1.5 ml of LB broth containing antibiotic and grown for 4 hours at 37 

°C. Minimal media agar plates were prepared containing the appropriate antibiotic 

with 3 plates necessary for every 500 ml planned culture. Each plate was spread with 

100 µl of the LB culture and bacterial lawns allowed to grow overnight at 37 °C. 

Bacteria were scraped from the plates into 500 ml of minimal media containing a 

source of 15N-ammonium or 15N-ammonium and 13C-glucose. Cultures were grown in 

baffled 2 litre flasks for 1 hour at 37 °C and then 2 hours at 25 °C. The cultures were 

induced with 100 µM IPTG and grown on for approximately 16 hours. Bacteria were 

pelleted and stored at -20 °C until processed. 

 

For expression of PLCγ1 core and full-length variants, Freestyle 293F cells were the 

eukaryotic system of choice. Cells were grown in suspension on a platform shaker in 

a humidified 37°C CO2 incubator (Infors) with rotation at 130 rpm. Cells were 

maintained between 4 x 105 and 3 x 106 cells/ml in a volume of 250 ml in 1 L culture 

flasks using Freestyle 293F Expression Medium (Invitrogen). For transfections, 250 

ml of 293F cells (1.0 x 106 cells) were mixed with plasmid DNA:PEI complexes 

prepared as follows. 10 ml of OptiPRO SFM™ (Invitrogen) supplemented with 4mM 

of L-Glutamine was mixed with 312 μg of DNA and a volume of PEI (∼25 kDa 

branched) at 1 mg/ml that is 1.5 times the mass ratio of the amount of DNA. The 

transfection mix was incubated at room temperature for 15 minutes before being 

added to the 293F cells. Following incubation for 72 h at 37 °C with shaking, the cells 



 

were pelleted by centrifugation at 2000 x g for 15 min. The pellets were snap frozen 

in liquid nitrogen and then stored at -80 °C. 

 

Purification of recombinant proteins – For purification of protein domains expressed 

in C41 (DE3). Pellets derived from 1 L cultures were resuspended in 20 ml of chilled 

Lysis Buffer (25 mM Tris.Cl, 250 mM NaCl, 40 mM Imidazole, 10 mM 

Benzamidine, 1 mM MgCl2 and 100 µM CaCl2, 100 µg/ml lysozyme, pH 8.0). 

Resuspension was accomplished by placing the pellets on an orbital shaker set at 200 

rpm at 4 °C for 30 minutes. Lysis was continued by the addition of 5 ml of a solution 

of 10% (v/v) Triton-X-100 and 1 Kunit of bovine pancreatic DNAse I, on the orbital 

shaker at 200 r.p.m. at 4 °C for 1 hour. Clarification of the lysate was performed by 

centrifugation of the sample for 1 hour at 4 °C at 18,000 rpm in an SS34 rotor 

(Sorvall). The clarified sample was applied to a 5 ml HisTrap column (GE 

Healthcare) on an Akta Explorer system (GE Healthcare) utilizing His Buffer A (25 

mM Tris.Cl, 500 mM NaCl, 40 mM Imidazole, 1 mM TCEP, pH 8.0). Non-

specifically bound proteins were removed by washing the column with 10 column 

volumes of His Buffer A. His-tagged recombinant proteins were eluted with a linear 

gradient from His Buffer A to His Buffer B (25 mM Tris.Cl, 500 mM NaCl, 500 mM 

Imidazole, 1 mM TCEP, pH 8.0) over 5 column volumes. Eluted protein was 

quantified using a Nanodrop (Thermo Scientific) using the extinction coefficient of 

the protein. The N-terminal tags on the proteins were cleaved overnight by addition of 

the relevant protease, 10 µg of protease was added per 1 mg of His-tagged protein. 

For pTriEx4-expressed proteins, TeV protease was utilized. For His-Sumo tagged 

proteins, Ulp1 protease was added. For pTriEx6-expressed proteins the tags were left 

intact and the subsequent purification steps are outlined in the next paragraph below. 



 

The protein/protease mix was dialysed overnight at 4 °C against 500 ml of Dialysis 

Buffer (25 mM Tris.Cl, 150 mM NaCl, 10 mM Imidazole and 1 mM TCEP, pH 8.0). 

Subsequently, proteins were passed again over the 5 ml HisTrap column and material 

that did not bind was collected. These proteins were dialysed against Low Salt 

Dialysis Buffer (25 mM Tris.Cl, 20 mM NaCl, 1 mM TCEP, pH 8.0) for a minimum 

of 3 hours at 4 °C. Subsequently, proteins were further purified by application to a 5 

ml HiTrap Q column (GE Healthcare) in Q Buffer A (25 mM Tris.Cl, 20 mM NaCl, 1 

mM TCEP, pH 8.0) and eluted in a linear gradient to 50% of Q Buffer B (25 mM 

Tris.Cl, 1 M NaCl, 1 mM TCEP, pH 8.0) over 25 column volumes. Fractions 

containing the recombinant protein were pooled and then applied to a Superdex 75 

26/60 column (GE Healthcare). The Gel Filtration buffer used depended on the final 

application for the protein. For NMR analyses the following buffer was used, 25 mM 

Na2HPO4/NaH2PO4, 50 mM NaCl, 5 mM DTT, 1 mM EDTA, pH 6.5. For other 

analyses the standard Gel Filtration Buffer was 25 mM Tris.Cl, 150 mM NaCl, 1 mM 

TCEP, pH 8.0. Fractions were collected, pooled and concentrated in Vivascience spin 

concentrators (Vivaproducts), snap frozen in liquid nitrogen and stored at -80 °C. 

 

FGFR1 with 2xStrpII tags as expressed from pTriEx6 were purified differently after 

the HisTrap purification step. Fractions of these proteins were immediately applied to 

a 5 ml Streptactin column (GE Healthcare) and washed with Streptactin Buffer A (25 

mM Tris.Cl, 150 mM NaCl, pH 8.0) to remove non-specifically bound contaminants. 

The recombinant proteins were eluted from the column using Streptactin Buffer B (25 

mM Tris.Cl, 150 mM NaCl, 5 mM desthiobiotin, pH 8.0). Eluted protein was further 

purified as above using standard Gel Filtration Buffer, concentrating and storing the 

protein.  



 

 

Proteins expressed in 293F cells were isolated by the following method. Cell pellets 

corresponding to 15 to 25 g of material were resuspended in 25 ml of 293F Lysis 

Buffer (25 mM Tris.Cl, 250 mM NaCl, 40 mM Imidazole, 10 mM Benzamidine, 1 

EDTA free protease inhibitor tablet (Roche), pH 8.0). Cell lysis was performed using 

a sonicator probe supplying 5 x 30 sec pulses with 30 sec between each pulse while 

material was kept on ice. Lysed material was clarified by centrifugation at 4 °C for 2 

hours at 18,000 rpm in a Sorvall SS34 rotor. Subsequently, proteins were purified as 

outlined above with the following exceptions. Full-length PLCγ1 proteins were left 

with their tags intact and after HisTrap purification were purified by Gel Filtration on 

a Superdex 200 26/60 into standard buffer before concentrating and storing. PLCγ1-

core proteins had their tags removed by incubation with HRV 3C protease and were 

subsequently treated as outlined above except that Superdex 200 26/60 Gel Filtration 

was applied. 

 

Phosphorylation of FGFR1 for ITC experiments- The human FGFR1 (456-774, 

L457V, Y463F, C488A, Y583F, C584S, Y585F, Y653F and Y654F) kinase domain 

that had been expressed as a His-SUMO tagged protein was purified as outlined 

above. This protein contains only one remaining tyrosine that can be 

autophosphorylated, Y766, but since the protein was expressed in cells harbouring λ-

phosphatase, this protein is largely unphosphorylated. To enable autophosphorylation, 

the protein was concentrated to 20 mg/ml in 25 mM Tris.Cl, 150 mM NaCl, 1 mM 

TCEP, pH 8.0. To this protein, 25 mM MgCl2 and 10 mM ATP was added and 

incubated for 72 hours at 4 °C. The resulting protein was desalted into 25 mM Tris.Cl, 

20 mM NaCl, 1 mM TCEP, pH 8.0 and applied to a Resource Q (GE Healthcare) 



 

column. The unphosphorylated and phosphorylated forms were separated by 

application of a shallow NaCl gradient from 20 mM to 250 mM over 40 column 

volumes. Non-phosphorylated protein was recycled through the same procedure. 

Phosphorylated FGFR1pY766 designated FGFR1-1p was concentrated, snap frozen in 

liquid nitrogen and stored at -80 °C. 

 

Phosphorylation of PLCγ1nSH2-cSH2 for ITC experiments and Crystallography- The 

tandem PLCγ1nSH2-cSH2 (545-790) domains contain 3 tyrosine residues, Y771, 775 

and 783, that are readily phosphorylated by FGFR1 and other tyrosine kinases. It was 

found that phosphorylation and subsequent isolation of preparations phosphorylated at 

all 3 residues or specifically at one or more residues was practically very challenging. 

Furthermore, tandem proteins phosphorylated at Y771 or Y775 often form complexes 

with the SH2 domains form other tandem molecules, leading to aggregation. 

Therefore, to simplify the procedure and increase the homogeneity of the preparation, 

2 of the tyrosine residues, Y771 and Y775 (shown not to be important for activation 

of PLCγ1), were mutated to phenylalanine. This mutant tandem, nSH2-

cSH2Y771F,Y775F was shown to behave identically to the wild-type in pull-down assays. 

Nevertheless, a method could still not be designed to allow separation of the non-

phosphorylated from the pY783-phosphorylated tandem. Instead the following 

method was applied to maximize the amount of pY783 tandem produced, which relies 

on the discovery that pY783 tandem (as well as phosphorylated γ1SA and full-length 

PLCγ1) has a lower affinity for FGFR1 than the non-phosphorylated variants.  

 

Five hundred µl of Streptactin Macroprep beads (IBA) were washed 3 times in Pull-

Down Buffer (25 mM Tris.Cl, 150 mM NaCl, 1 mM TCEP, pH 8.0) and subsequently 



 

added to 1.1 mg of FGFR1-3p. After 5 minutes the beads were washed a further 3 

times to remove unbound protein. The FGFR1 was activated through the addition of 

ATP buffer (25 mM Tris.Cl, 150 mM NaCl, 25 mM MgCl2, 10 mM ATP, 1 mM 

TCEP, pH 8.0) and incubated for 10 minutes at room temperature. Twenty-five mg of 

PLCγ1nSH2-cSH2Y771F,Y775F was added and phosphorylation continued for 72 hours 

at 4 °C. Protein in the supernatant was separated from the beads by centrifugation and 

desalted on a Superdex 75 26/60 column into standard Gel Filtration Buffer. Protein 

was concentrated and used immediately for setting up crystals or snap frozen in liquid 

nitrogen and stored at -80 °C in preparation for ITC measurements. 

 

Phosphorylation of PLCγ1 full length (Y186F, Y472F, Y481F, Y771F, Y775F, Y959F, 

Y977F, Y1254F) for SAXS measurements- Although the wt variant of full length 

PLCγ1 could be phosphorylated in vitro with FGFR1, the resulting protein was prone 

to aggregation at high concentrations and could not be used in SAXS measurements. 

To overcome this hurdle, we mutated all the tyrosine phosphorylation sites except 

Y783 to phenylalanine. The resulting mutant protein was phosphorylated in a manner 

identical to that outlined above for the tandem mutant except that 15 mg of PLC was 

used. 

 

Crystallography, NMR and SAXS measurements 

Crystallography- Crystals of both apo and phosphorylated (nSH2-cSH2) were 

prepared by the hanging drop vapor diffusion method.  The apo form of the protein 

was crystallized using 22% PEG 5000 MME, 0.1M Na Malonate and 20mM CaCl2 as 

a precipitant and the phosphorylated form crystallized in 18 % PEG 8000, 0.1 M 

HEPES.Na and 200 mM Calcium Acetate, pH 7.5.  The protein concentration used 



 

was 10 mg/ml for both crystal forms and plates were incubated at 16°C.  The crystals 

were cryoprotected using 30% ethylene glycol made up in the precipitant solution 

then added in an equal volume to drops followed by transfer of crystals into the 

cryosolution prior to flash freezing.  Data were collected for the apo form at ID29 at 

the ESRF and for the phosphorylated form at IO4 at the DIAMOND Synchrotron.  

The data was processed using the XDS package for integration of the images, the 

CCP4 package for further processing and the BUSTER package for refinement.  

Building was carried out with the program COOT.  Final images were created using 

the program PYMOL. 

 

Nuclear Magnetic Resonance- NMR experiments of labeled protein constructs were 

typically executed in a protein construct concentration range of 0.2-0.5 mM. The 

titration experiments with unlabeled partner (0-3.0 molar equivalents) were conducted 

at constant concentration of the labeled component (McAlister et al, 1996). Typical 

acquisition times for 2D WATERGATE-flipback 15N,1H-HSQC (Grzesiek & Bax, 

1993) datasets were ~1 h. 

 

15N Relaxation Measurements- Spin relaxation data were collected at 25° C for a 200 

mM 15N-labeled tandem nSH2-cSH2 construct (residues 545-790) on a Bruker 

AVANCE spectrometer operating at 600MHz. R1 and R2 were collected as 

previously described (Kay et al, 1989). R1 and R2 values were determined for each 

residue by fitting an exponential decay to the peak intensity of data collected in an 

interleaved manner to minimize time dependent temperature or stability effects with 

delay times in random sequence. T1 longitudinal recovery delays were set to 10, 100, 

200, 300, 500, 800, 1000 and 1500 ms. T2 transverse recovery delays were set to 8, 



 

24, 48, 72, 96, 128, 160 and 208 ms. In each case the error was determined from the 

fit according to a procedure implemented in CCPN Analysis (Vranken et al, 2005). 

Residues were excluded in which overlap in the data precluded accurate measurement 

of peak intensity. Isotropic correlation times were determined using the programe 

TENSOR2 (Dosset et al, 2000). Data for residues where R2/R1 deviated significantly 

from the bulk, indicative of local motion or chemical exchange, were also excluded 

from the fits.  

 

Differential line broadening analysis- The trajectory of the cross-peak intensities 

(inversely related to the contributing linewidths) in multidimensional heteronuclear 

NMR spectra employed to monitor interactions between macromolecules can reflect 

contributions from fast, intermediate and slow exchange. For a given cross peak the 

outcome will depend upon the ‘local’ magnitudes of the chemical shift difference(s) 

between the species in solution (including any intermediates along the reaction 

pathway) and the relevant microscopic rate constants. Wagner and co-workers 

(Matsuo et al, 1999) recognised that it is useful to profile the effect upon cross-peak 

linewidths and intensities by measurement of the quantity  

 

∆i = (h0,i/H0) – (hi/Hi) 

 

where h0,i and hi represent the individual cross peak heights from the labeled protein 

spectrum in the absence and presence of a specific concentration of the binding 

partner, and H0 and Hi represent the average peak heights in the corresponding 2D 

NMR spectrum (Walters et al, 1999). A non-uniform profile of the quantity Δi (Figure 

5B in the main manuscript) across the polypeptide chain would indicate differential 



 

line broadening in the binding reaction potentially highlighting regions of the labelled 

protein that are most strongly perturbed in the encounter with the binding partner.  

 

SAXS data collection and analysis- Synchrotron SAXS data were collected on the 

EMBL X33 camera with a Pilatus detector on the storage ring DORIS III (Deutsches 

Elektronen-Synchrotron (DESY), Hamburg, Germany) and ESRF ID14-3 camera 

with a Pilatus detector (ESRF, Grenoble, France). All samples were measured for at 

least three solute concentrations ranging from 1 mg/ml to 1-10 mg/ml. The data were 

processed by the program PRIMUS (Konarev et al, 2003) following standard 

procedures (Svergun & Koch, 2002) to compute the radii of gyration (Rg) and 

maximum dimensions (Dmax). The distance distribution functions, p(r), were 

evaluated using the program GNOM (Svergun, 1992). The molecular masses of the 

solutes were estimated by calibration against reference solutions of bovine serum 

albumin. The excluded particle volumes Vp were computed from the scattering data 

using Porod invariant (Porod, 1982). 

Low resolution models of PLCγ fragments were generated by the ab initio program 

DAMMIN (Svergun, 1999), which represents a protein by volume filled with the 

packed spheres referred to as dummy atoms. The results of 10 independent DAMMIN 

runs were analyzed and averaged by SUPCOMB (Kozin & Svergun, 2001) and 

DAMAVER (Volkov & Svergun, 2003). 

Multiple fitting and pairwise comparison of SAXS data for different constructs have 

been determined by ab initio program MONSA (Svergun, 1999) which is an extended 

version of DAMMIN for multiphase bead modeling and allows to fit simultaneously 

multiple curves. MONSA reads in multiple data sets and information about the 

presence or absence of components in the construct.  



 

 

XPLOR-NIH Protocol to generate random structures for EOM- The SH3 (residues 

791-852, PDB 1HSQ), splitPH (residues 488-521 and 874-933, PDB 2FLJ) and 

tandem nSH2-cSH2 domains (residues 549-767, crystal structure) were treated as 

rigid bodies. The tandem SH2 structure was held fixed in space whilst the linker 

regions were given Cartesian degree of freedom. The generation of the structures 

comprised 4 steps. 

Step 1. The relative positions and rotations of the globular domains were randomized, 

breaking the bonds between the linking segments and the domains (residue pairs 

521/522, 548/549, 767/768, 790/791, 852/853, 873/874). Backbone torsion angles in 

the linker regions were also randomized.  

Step 2. The highly distorted bonds linking the randomized linker regions and the 

globular domains were reconstructed . The geometry of the linker regions was then 

optimized, allowing the domains to rotate and translate as rigid bodies and with full 

Cartesian degree of freedom for the linker regions, by 3 cycles of minimization (1000 

steps each) to optimize the bond, angles and improper terms. 

 

Step 3. A final gradient minimization was performed with potential energy terms that 

include bonds, angles, improper torsions, van der Waals and Ramachandran database 

potential terms allowing the splitPH and SH3 domains to move relative to the tandem 

nSH2-cSH2 as rigid bodies. 

Step 4. Simulated annealing with temperature from 3000 to 25 K is performed with 

steps of 25K. The dynamics runs for 800 ps or 8000 variable time steps (whichever 

ends first) and includes all the potentials.  



 

For the restrained model pool, highly ambiguous inter-residue distance restraints were 

created corresponding to the perturbed resonances in the splitPH and cSH2 domains 

according to a procedure described by Clore et al. (Clore & Schwieters, 2003).  The 

distance restraints were applied using a soft asymptotic square-well energy function 

with restraints distances calculated as sum-averages over all relevant atom selection 

pairs, following the randomization of the relative domains positions and prior to 

reforming the peptide bonds with the linker segments. Full Cartesian degree of 

freedom was given to the side chains of the residues undergoing chemical shift 

perturbation. 

For clarity, the XPLOR-NIH SAXS and ratio of gyration potential energy terms were 

not used in the generation of the unrestrained and restrained EOM model pools. 

 

XPLOR-NIH Protocol to generate docked starting structure for ensemble refinement- 

In addition to the EOM approach we separately attempted to exploit the ensemble 

modelling approaches to fitting SAXS data provided within the advanced features of 

the XPLOR-NIH v2.27 software package. Thus instead of using a genetic algorithm 

to filter a pre-generated pool of conformations for sets that together provide a good fit 

to the SAXS data, the dynamical simulated annealing target function of XPLOR-NIH 

can be made to include the experimental SAXS scattering data as part of the target 

function (along with other experimental restraints) whilst simultaneously requiring the 

target function to be fit for an ensemble of multiple structural models.  

The procedure to generate the starting structures for the XPLOR-NIH ensemble 

refinement was very similar to the approach adopted for the early stage of the EOM 

approach (see above). Thus, starting from a hand-built model of the SA structure, the 

bonds between the globular domains and linking segments were broken, the linker 



 

backbone torsion angles randomized, and the bonds reformed under the influence of 

the SAXS and NOE (see below) potential with a procedure similar to that adopted by 

Schwieters et al. (Schwieters et al, 2010). 

A simulated annealing procedure including all the potentials (including that for 

backbone torsion angles) was performed similarly to the generation of the random SA 

structures for EOM. 

The docking procedure was repeated five times and the output structures were scored 

on the basis of their SAXS and NOE energies. Of these the best model was selected 

for further calculations. Overall a total of 200 conformers were generated for analysis 

and subsequent ensemble refinement.  

Similarly to the EOM method we model transient interactions between the cSH2 and 

spPH domains using highly ambiguous NOE restraints involving all the backbone and 

side chain atoms of the residues that display chemical shift perturbations in the NMR 

spectra (as above).  

 

XPLOR-NIH Ensemble refinement- Of the 200 starting conformers generated from the 

docking procedure the 50 conformers with the lowest NOE RMSD (< 2.25 Å) were 

selected for ensemble refinement against the SAXS data. 

To select the smallest number of ensemble members to reproduce the experimental 

data, refinement of a subset of structure was done with ensemble number (Ne) of 2, 4, 

8 and 16. There was no improvement in the calculated NOE and SAXS RMSDs using 

Ne > 4, therefore for the refinement stage Ne=4 was used. The 50 selected conformers 

were subjected to a simulated annealing procedure with temperature ramped down 

from 3000 to 25 K in 25 K steps. The included potential terms were averaged over the 

ensemble. (For clarity, the Radius of gryration (Rg) and ‘restrain atom positions’ 



 

(RAP) potential terms were not used. The use of Rg potential would constrain each 

member of the ensemble to have the same radius of gyration whilst the RAP potential 

is used to keep the ensemble members from drifting too far apart.) Full torsional 

freedom was given to the linkers (that reduces the convergence but increases the 

probability that the ensemble members will have different domain arrangements). 

At the end of the calculation the 25 four-member ensembles that best agree with the 

experimental SAXS data were selected for structural analysis (a total of 100 structural 

models).  

As the number of calculated conformations is large, a weighted atomic probability 

density map was used to represent the relative domain positions. A volumetric mass 

density map was calculated corresponding to the atoms of the spPH domain using the 

program VMD (Humphrey et al, 1996). The map represents the variation of the 

position of the spPH domain relative to that of the tandem nSH2-cSH2 domains 

(which was held fixed during the calculations). The volumetric map was calculated 

for the residues 488-521 and 874-933 over a 3Å resolution grid with an effective 

atomic size taken corresponding to three times the corresponding standard atomic 

radius. The volumetric map was weighted according to the atomic masses to obtain 

the overall mass distribution and represented as a wireframe isosurface. 

 

Functional Assays 

Analysis of inositol phosphate formation in intact COS-7 and PAE cells- COS-7 and 

PAE cells were maintained at 37 oC in a humidified atmosphere of 95 % air and 5 % 

CO2 in either Dulbecco’s modified Eagle’s medium (DMEM) (Invitrogen) for COS-7 

or Ham’s F12 (Invitrogen) for PAE supplemented with 10 % (v/v) foetal bovine 

serum (Invitrogen) and 2.5 mM glutamine. Prior to transfection, cells were seeded 



 

into 6-well plates at a density of 1.7x105 cells/well (COS-7) or 3x105 cells/well (PAE) 

and grown for 24 h in 2 ml/well of the same medium. For transfections, 1.0 µg (COS-

7) or 1.5 µg (PAE) of PLCγ DNA was mixed with 1 µl PlusReagentTM and 7 µl 

LipofectamineTM (Invitrogen) and added to the cells in 0.8 ml media without serum. 

The cells were incubated for 3 hours (COS-7) or 2 hours (PAE) at 37 oC, 5% CO2 

before the transfection mixture was removed and replaced with media containing 

serum. Twenty-four hours (COS-7) or 6 hours (PAE) post-transfection cells were 

labeled with 1.5μ Ci/ml myo- [2-3H] inositol (Perkin-Elmer). After a further 24 h the 

cells were incubated in 1.2 ml inositol free media without serum containing 20 mM 

LiCl with or without stimulation with EGF (COS-7) or FGF/Heparin (PAE) for 1 h. 

The cells were lysed by addition of 1.2 ml 4.5 % perchloric acid and supernatants and 

pellets were separated. Inositol phosphates were collected using AG1-X8 200–400 

columns (BioRad). Levels of inositol phosphates were quantified by liquid 

scintillation counting using Ultima-Flo scintillation fluid (Perkin Elmer). PLC activity 

is expressed as the total inositol phosphates formed relative to the amount of [3H] 

inositol in the phospholipid pool. 

 

Isothermal Titration Calorimetry- For FGFR1-1p interactions with PLCγ1 domains. 

Heats of interaction were measured on a VP-ITC system (Microcal) with a cell 

volume of 1.458 ml. Proteins were dialysed for 16 hours in ITC buffer (25 mM 

Tris.Cl, 150 mM NaCl, 1 mM TCEP, pH 8.0). PLCγ1 domains were loaded in the 

sample cell at 25 µM and titrated with FGFR1-1p in the syringe (400 µM). The 

titrations were performed while samples were being stirred at 260 r.p.m. at 20 °C. A 

total of 20 injections was carried out with 15 µl injected each time (except the first 

injection when 3 µl was injected) and a 4 min interval between each injection to allow 



 

the baseline to stabilise. The data were fitted with either a two-site or single site 

(where appropriate) model to calculate the number of binding sites (n), the binding 

constant (Ka), the change in enthalpy (∆Ho) and change in entropy (∆S) using Origin 

software (Microcal). 

 

For PLCγ1-core interactions with the cSH2 domain. Heats of interaction were 

measured on an iTC200 system (Microcal) with a cell volume of ∼200 µl. Proteins 

were dialysed for 16 hours in ITC buffer (25 mM Tris.Cl, 150 mM NaCl, 1 mM 

TCEP, pH 7.5). Proteins were loaded in the sample cell at ∼100 µM and titrated with 

the binding partner in the syringe (∼1 mM). The titrations were performed while 

samples were being stirred at 1000 r.p.m. at 20oC. A total of 20 injections was carried 

out with 2 ml injected each time (except the first injection when 0.4 µl was injected) 

and a 1 min interval between each injection to allow the baseline to stabilise. The data 

were fitted with a single site model to calculate the number of binding sites (n), the 

binding constant (Ka), the change in enthalpy (DHo) and change in entropy (DS) using 

Origin software (Microcal). 

 

Pull Down experiments- The pull down assay was used to immobilize FGFR1-3p 

proteins and pull down PLCγ1 constructs (full length or γSA). To bind 2xStrpII-

tagged FGFR1-3p to Streptactin Macroprep beads (IBA), 57 µg of FGFR1-3p was 

immobilized on 300 µl of Streptactin Macroprep beads in Pull Down Buffer (PDB) 

(50 mM Tris.Cl, 150 mM NaCl, 25 mM MgCl2, 1 mM MnCl2, 2 mM TCEP, 0.1 % 

(v/v) Triton-X-100, pH 8.0) to which 10 mM ATP had been added. Incubation was 

carried out at room temperature for 1 hour with constant agitation. The beads were 

subsequently washed five times in 500 µl of PDB to remove ATP and any unbound 



 

protein and then resuspended in 1.1 ml of PDB. The PLCγ1 molecules were diluted to 

0.3 mg/ml (Full length) or 0.6 mg/ml (γSA). Subsequently, to each microfuge tube the 

following were added, 100 µl of FGFR1-3p loaded beads, 500 µl of PDB containing 

either 10 mM ATP or not, 50 µl of the PLCγ1 construct and incubated at room 

temperature for 1 hour with constant agitation. The beads were then washed five 

times in PDB and then were boiled in 50 µl Laemmli buffer and a 20 µl aliquot 

subjected to SDS-PAGE. Gels were stained with Colloidal Coomassie and imaged 

with a Syngene G-Box gel documentation system. Bands were quantified using 

ImageJ software. 

 

In-vitro PLC assay- Experiments to determine the effect of phosphorylation or the 

removal of the regulatory γSA on PLC activity used phospholipid vesicles containing 

33 mM PtdIns(4,5)P2, 536 µM PE, and ~15,000 cpm/assay [3H]PtdIns(4,5)P2 (Perkin 

Elmer).  Lipid were dried down under a stream of N2 and then resuspended in reaction 

buffer. Lipid vesicles were formed by a combination of vortexing and cup sonication. 

Final buffer conditions were 50 mM Tris.Maleate (pH 7.3), 70 mM KCl, 3 mM 

EGTA, 2 mM DTT, 0.18 % (w/v) fatty acid free-BSA, and 300 nM free Ca2+ in a 

final volume of 60 µl.  All reactions were performed at 30°C for 45 min.  Reactions 

were terminated through the addition of 350 µl of Stop solution I 

[Chloroform:Methanol:HCl (500:500:3)] and 100 µl of Stop Solution II (1M HCl, 

5mM EGTA) and [3H]Ins(1,4,5)P3 was quantified by liquid scintillation counting of 

the soluble fraction after centrifugation of the reaction mixture. 

 

Mass Spectrometry analysis of peptides- Proteins were digested directly in excised 

fragments from SDS-PAGE gels using trypsin or other proteases. Samples were 



 

infused into an LTQ Velos Orbitrap mass spectrometer (Thermo Fisher Scientific, 

Hemel Hempstead, UK).  MS/MS were acquired using data dependent acquisition to 

sequence the top 10 most intense ions using enhanced ion trap scans. Raw MS/MS 

data was submitted for database searching using Proteome Discoverer v1.2 and 

Mascot v2.2. MS/MS-based peptide and protein identifications were grouped and 

validated using Scaffold v3.0 (Proteome Software Inc., Portland, OR). For 

characterization of phosphorylation sites the spectra visually inspected to evaluate the 

accuracy in localisation of the assigned modification(s).  
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