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Supplemental Methods 

Lipogenic and fat oxidation assays. For measurement of lipogenesis, hepatocytes were treated ± 

10 ng/ml rIl-13 overnight followed by incubation with 14C-acetate for 6 h. 14C-lipids were 

extracted with 2:1 choloroform:methanol and normalized to protein content. Fatty acid oxidation 

assays were conducted using the 3H palmitate tracer, following overnight rIl-13 treatment. 3H2O 

was determined and normalized to the protein concentration. 

FACS and F4/80+ cell isolation. Livers and WAT were harvested from mice fasted for 6 h. Liver 

cells were released by extensive pipetting and filtered through a cell strainer (70 µm), followed 

by centrifugation at 50g to pellet hepatocytes. Supernatant containing immune cells was washed 

and collected. WAT was digested for 30 min at 37°C with 2 mg/mL collagenase, filtered through 

nylon mesh (250 µm) and centrifuged to pellet the stromal vascular fraction. Cells devoid of 

hepatocytes or adipocytes were subjected to either FACS using antibodies against F4/80 (Life 

Technologies) and Mgl1 (AbD Serotec) or magnetic beads conjugated with anti-F4/80 antibody 

(Life Technologies) for RNA isolation to determine M1/M2 gene expression in resident 

macrophages. 
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Supplemental table 1  

Metabolic parameters of high fat fed BALB/c mice 

BALB/c HFD wt Il-13–/– 

Weight (g) 42.78±1.82 43.66±1.31 

Liver/body weight (mg/g) 33.44±1.2 34.13±1.27 

WAT/body weight (mg/g) 32.7±1.5 33.32±3.12 

Glucose (mg/dL) 99.20±9.40 141.20±12.16* 

Insulin (ng/mL) 0.47±0.009 0.45±0.004 

Triglyceride (mg/dL) 49.53±4.37 67.59±5.43* 

Cholesterol (mg/dL) 111.19±5.00 125.64±5.57 

Free fatty acid (mMol) 2.05±0.12 1.71±0.14 

Lactate (mg/dL) 15.49±1.16 14.42±1.15 

 
Mice were fasted 6 h (n = 8/genotype). *p < 0.05, wt vs. Il-13–/– mice 
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Supplementary figures and figure legends 

 

 

 

Supplemental Figure 1  
Body weight and insulin responses in chow-fed and insulin signaling in high fat fed Il-13–/– mice 
in the BALB/c background. (A) The expression of Il-13 receptors in immune and non-immune 
cells determined by real-time PCR. Il-13 (and Il-4) binds to type II receptors consisting of Il-
4rα/Il-13rα1 dimers. Il-13rα2 is thought to be a decoy receptor. Il-4 also binds to type I 
receptors consisting of Il-4rα/γc dimers, which are only expressed in immune cells, such as T 
lymphocytes. (B) Body weight and (C) insulin tolerance test (ITT) in wild-type (wt) or Il-13–/– 
mice in the BALB/c background on a normal chow diet (9% fat). ITT was conducted in 6 month 
old animals (n = 5/genotype). (D) Immunoblotting of tissue insulin signaling in high fat fed wt 
and Il-13–/– mice in the BALB/c background assessed by insulin stimulated Akt phosphorylation 
(n = 8/genotype). 5u/kg insulin was i.p. injected and tissues were collected 10 min later. Data are 
presented as mean ± SEM. 
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Supplemental Figure 2 
Increased hepatic gluconeogenic gene expression in BALB/c Il-13–/– mice on high fat diet.  (A) 
Metabolic gene expression in the liver. Liver samples from 6 h fasted wt and Il-13–/– mice in the 
BALB/c background (n=6, high fat diet for 6 months) were collected and gene expression was 
analyzed by quantitative, real-time PCR. (B) Glucose production and gluconeogenic gene 
expression are elevated in primary hepatocytes derived from Il-13–/– mice (BALB/c on high fat 
diet). rIl-13 (10 ng/ml) was given to hepatocytes for two hours followed by a 4 hour glucose 
production assay in the presence of rIl-13. Data are presented as mean ± SEM; *p < 0.05. 
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Supplemental Figure 3  
Assessment of macrophage activation and tissue inflammation in C57BL/6 wt and Il-13–/– mice 
on normal chow (7 month old males). (A) and (B) Gene expression analyses of inflammatory 
markers in F4/80+ cells isolated from livers and white adipose tissues (WAT) (n = 4). Cells were 
isolated using magnetic beads conjugated with anti-F4/80 antibody. Right panel: FACS analyses 
to examine the percentage of F4/80+ cells in the non-hepatocyte or non-adipocyte fraction and 
the expression of Mgl1 in F4/80+ cells. (C) Circulating concentrations of cytokines and 
chemokines determined by ELISA (n = 7). (D) WAT histology (sections from 3 individual 
mice). Scale bar: 100 µm. Data are presented as mean ± SEM; *p < 0.05. 
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Supplemental Figure 4  
Inflammatory and metabolic gene expression in BALB/c wt and Il-13–/– mice on high fat diet. 
(A) and (B) Gene expression analyses of inflammatory markers in liver and white adipose tissue 
(WAT). Tissue samples from 6 h fasted wt and Il-13–/– mice in the BALB/c background (n = 6, 
high fat diet for 6 months) were collected and gene expression was analyzed by quantitative, 
real-time PCR. (C) Expression profiling of oxidative metabolism and thermogenic genes in 
brown adipose tissue (BAT). Data are presented as mean ± SEM; *p < 0.05. 
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Supplemental Figure 5  
Assessment of knockout/knockdown efficiency and the role of Il-13 in fat metabolism in 
hepatocytes. (A) Hepatic expression of Il-13 and Il-4 at the fed or fasted state determined by 
quantitative real-time PCR (male C57BL/6 mice, n = 5). (B) The expression of Stat3 and Stat6 in 
wt, Stat3–/– and Stat6–/– hepatocytes ± rIl-13 (10 ng/ml) determined by quantitative real-time 
PCR. (C) The expression of Stat3, Stat6 and Il-13rα1 in control (sicontrol), Il-13rα1 siRNA 
(siIl-13rα1) and Stat3 siRNA (siStat3) transfected hepatocytes ± rIl-13 (10 ng/ml). (D) Il-4 does 
not suppress glucose production. Glucose production assays were conducted in primary 
hepatocytes ± rIl-13 or rIl-4 (10 ng/ml). (E) Lipogenic and fatty acid β oxidation assays in wt 
and Il-13–/– hepatocytes ± rIl-13. Data are presented as mean ± SEM; *p<0.05. 


