Supplemental data

Direct control of hepatic glucose production by interleukin-13

Kristopher J. Stanya¹, David Jacobi^{1,2}, Sihao Liu^{1,*}, Prerna Bhargava^{1,*}, Lingling Dai^{1,3}, Matthew R. Gangl¹, Karen Inouye¹, Jillian Barlow⁴, Yewei Ji⁵, Joseph P. Mizgerd⁶, Ling Qi⁵, Hang Shi⁷, Andrew N.J. McKenzie⁴ and Chih-Hao Lee^{1,†}.

¹Department of Genetics and Complex Diseases, Division of Biological Sciences, Harvard School of Public Health, 665 Huntington Ave, Boston, MA 02115, USA

²CHRU de Tours, Service de Médecine Interne-Nutrition, INSERM U 1069, Université François Rabelais, Tours, France

³Pharmacogenetics Research Institute, Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, People's Republic of China

⁴MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK

⁵Division of Nutritional Science, Cornell University, Ithaca, NY 14853, USA

⁶Pulmonary Center, Boston University School of Medicine, Boston MA 02118, USA

⁷Department of Internal Medicine, Wake Forest Health Sciences, Winston-Salem, NC 27157, USA

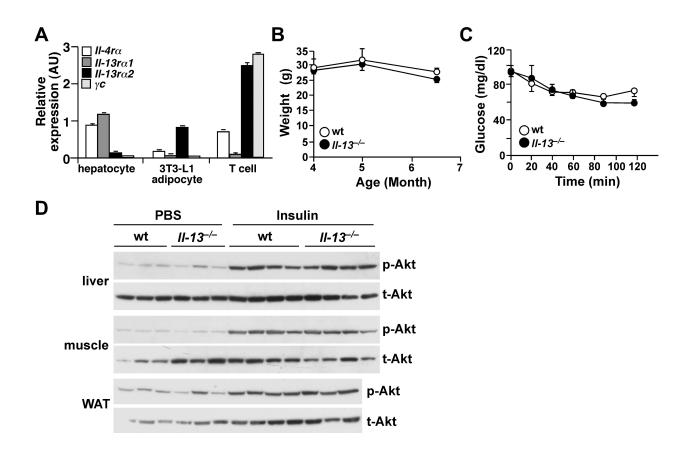
*These authors contributed equally to this work

- ⁺Correspondence should be addressed:
- C.-H. L. e-mail: clee@hsph.harvard.edu

Supplemental Methods

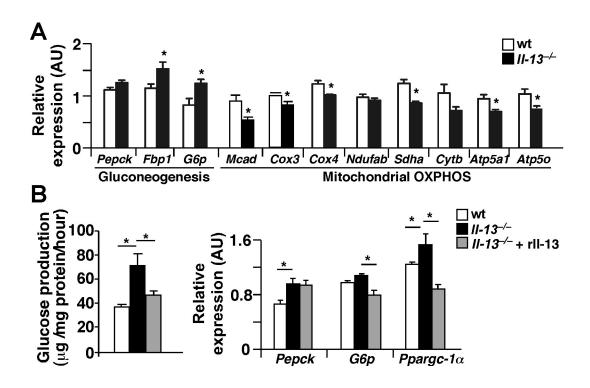
Lipogenic and fat oxidation assays. For measurement of lipogenesis, hepatocytes were treated \pm 10 ng/ml rIl-13 overnight followed by incubation with ¹⁴C-acetate for 6 h. ¹⁴C-lipids were extracted with 2:1 choloroform:methanol and normalized to protein content. Fatty acid oxidation assays were conducted using the ³H palmitate tracer, following overnight rIl-13 treatment. ³H₂O was determined and normalized to the protein concentration.

FACS and F4/80⁺ cell isolation. Livers and WAT were harvested from mice fasted for 6 h. Liver cells were released by extensive pipetting and filtered through a cell strainer (70 μ m), followed by centrifugation at 50g to pellet hepatocytes. Supernatant containing immune cells was washed and collected. WAT was digested for 30 min at 37°C with 2 mg/mL collagenase, filtered through nylon mesh (250 μ m) and centrifuged to pellet the stromal vascular fraction. Cells devoid of hepatocytes or adipocytes were subjected to either FACS using antibodies against F4/80 (Life Technologies) and Mg11 (AbD Serotec) or magnetic beads conjugated with anti-F4/80 antibody (Life Technologies) for RNA isolation to determine M1/M2 gene expression in resident macrophages.

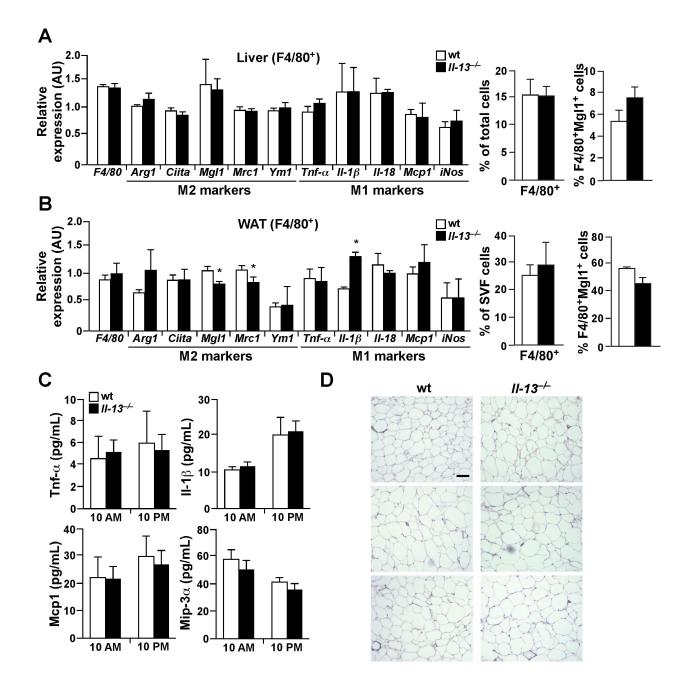

Supplemental table 1

Metabolic parameters of high fat fed BALB/c mice

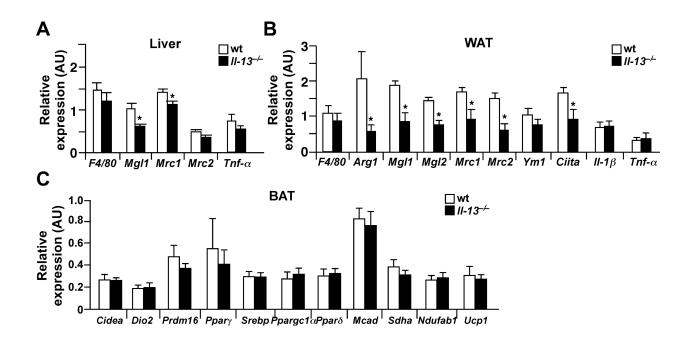
BALB/c HFD	wt	<i>II-13^{-/-}</i>
Weight (g)	42.78±1.82	43.66±1.31
Liver/body weight (mg/g)	33.44±1.2	34.13±1.27
WAT/body weight (mg/g)	32.7±1.5	33.32±3.12
Glucose (mg/dL)	99.20±9.40	141.20±12.16*
Insulin (ng/mL)	0.47±0.009	0.45±0.004
Triglyceride (mg/dL)	49.53±4.37	67.59±5.43*
Cholesterol (mg/dL)	111.19±5.00	125.64±5.57
Free fatty acid (mMol)	2.05±0.12	1.71±0.14
Lactate (mg/dL)	15.49±1.16	14.42±1.15

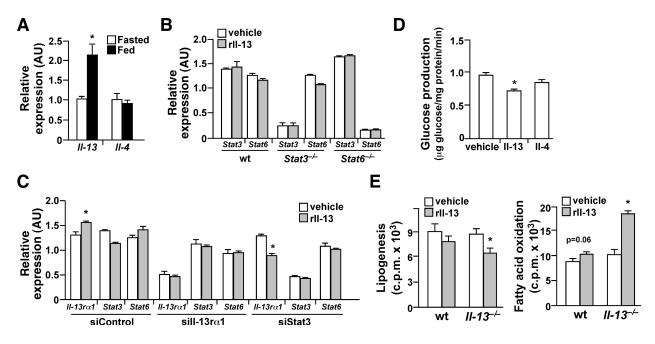

Mice were fasted 6 h (n = 8/genotype). *p < 0.05, wt vs. *Il-13^{-/-}* mice

Supplementary figures and figure legends



Supplemental Figure 1


Body weight and insulin responses in chow-fed and insulin signaling in high fat fed $II-13^{-/-}$ mice in the BALB/c background. (A) The expression of II-13 receptors in immune and non-immune cells determined by real-time PCR. II-13 (and II-4) binds to type II receptors consisting of II-4ra/II-13ra1 dimers. II-13ra2 is thought to be a decoy receptor. II-4 also binds to type I receptors consisting of II-4ra/ γ c dimers, which are only expressed in immune cells, such as T lymphocytes. (B) Body weight and (C) insulin tolerance test (ITT) in wild-type (wt) or $II-13^{-/-}$ mice in the BALB/c background on a normal chow diet (9% fat). ITT was conducted in 6 month old animals (n = 5/genotype). (D) Immunoblotting of tissue insulin signaling in high fat fed wt and $II-13^{-/-}$ mice in the BALB/c background assessed by insulin stimulated Akt phosphorylation (n = 8/genotype). 5u/kg insulin was i.p. injected and tissues were collected 10 min later. Data are presented as mean ± SEM.


Increased hepatic gluconeogenic gene expression in BALB/c $II-13^{-/-}$ mice on high fat diet. (A) Metabolic gene expression in the liver. Liver samples from 6 h fasted wt and $II-13^{-/-}$ mice in the BALB/c background (n=6, high fat diet for 6 months) were collected and gene expression was analyzed by quantitative, real-time PCR. (B) Glucose production and gluconeogenic gene expression are elevated in primary hepatocytes derived from $II-13^{-/-}$ mice (BALB/c on high fat diet). rII-13 (10 ng/ml) was given to hepatocytes for two hours followed by a 4 hour glucose production assay in the presence of rII-13. Data are presented as mean ± SEM; *p < 0.05.

Assessment of macrophage activation and tissue inflammation in C57BL/6 wt and $II-13^{-/-}$ mice on normal chow (7 month old males). (A) and (B) Gene expression analyses of inflammatory markers in F4/80⁺ cells isolated from livers and white adipose tissues (WAT) (n = 4). Cells were isolated using magnetic beads conjugated with anti-F4/80 antibody. Right panel: FACS analyses to examine the percentage of F4/80⁺ cells in the non-hepatocyte or non-adipocyte fraction and the expression of Mgl1 in F4/80⁺ cells. (C) Circulating concentrations of cytokines and chemokines determined by ELISA (n = 7). (D) WAT histology (sections from 3 individual mice). Scale bar: 100 µm. Data are presented as mean ± SEM; *p < 0.05.

Inflammatory and metabolic gene expression in BALB/c wt and $II-13^{-/-}$ mice on high fat diet. (A) and (B) Gene expression analyses of inflammatory markers in liver and white adipose tissue (WAT). Tissue samples from 6 h fasted wt and $II-13^{-/-}$ mice in the BALB/c background (n = 6, high fat diet for 6 months) were collected and gene expression was analyzed by quantitative, real-time PCR. (C) Expression profiling of oxidative metabolism and thermogenic genes in brown adipose tissue (BAT). Data are presented as mean \pm SEM; *p < 0.05.

Assessment of knockout/knockdown efficiency and the role of II-13 in fat metabolism in hepatocytes. (**A**) Hepatic expression of *II-13* and *II-4* at the fed or fasted state determined by quantitative real-time PCR (male C57BL/6 mice, n = 5). (**B**) The expression of *Stat3* and *Stat6* in wt, *Stat3^{-/-}* and *Stat6^{-/-}* hepatocytes ± rII-13 (10 ng/ml) determined by quantitative real-time PCR. (**C**) The expression of *Stat3*, *Stat6* and *II-13ra1* in control (sicontrol), II-13ra1 siRNA (siII-13ra1) and Stat3 siRNA (siStat3) transfected hepatocytes ± rII-13 (10 ng/ml). (**D**) II-4 does not suppress glucose production. Glucose production assays were conducted in primary hepatocytes ± rII-13 or rII-4 (10 ng/ml). (**E**) Lipogenic and fatty acid β oxidation assays in wt and *II-13^{-/-}* hepatocytes ± rII-13. Data are presented as mean ± SEM; *p<0.05.