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Supplemental Methods

Lipogenic and fat oxidation assays. For measurement of lipogenesis, hepatocytes were treated +
10 ng/ml rIl-13 overnight followed by incubation with '*C-acetate for 6 h. "*C-lipids were
extracted with 2:1 choloroform:methanol and normalized to protein content. Fatty acid oxidation
assays were conducted using the *H palmitate tracer, following overnight rll-13 treatment. *H,O
was determined and normalized to the protein concentration.

FACS and F4/80" cell isolation. Livers and WAT were harvested from mice fasted for 6 h. Liver
cells were released by extensive pipetting and filtered through a cell strainer (70 um), followed
by centrifugation at 50g to pellet hepatocytes. Supernatant containing immune cells was washed
and collected. WAT was digested for 30 min at 37°C with 2 mg/mL collagenase, filtered through
nylon mesh (250 wm) and centrifuged to pellet the stromal vascular fraction. Cells devoid of
hepatocytes or adipocytes were subjected to either FACS using antibodies against F4/80 (Life
Technologies) and Mgll (AbD Serotec) or magnetic beads conjugated with anti-F4/80 antibody
(Life Technologies) for RNA isolation to determine MI1/M2 gene expression in resident

macrophages.



Supplemental table 1

Metabolic parameters of high fat fed BALB/c mice

BALB/c HFD wt 1-137
Weight (g) 42.78+1.82 43.66+1.31
Liver/body weight (mg/g) 33.44+1.2 34.13+£1.27
WAT/body weight (mg/g) 32.7+1.5 33.3243.12
Glucose (mg/dL) 99.20+9.40 141.20+12.16*
Insulin (ng/mL) 0.47+£0.009 0.45+0.004
Triglyceride (mg/dL) 49.53+4.37 67.59+5.43*
Cholesterol (mg/dL) 111.19+5.00 125.64+5.57
Free fatty acid (mMol) 2.05+0.12 1.71+0.14
Lactate (mg/dL) 15.49+1.16 14.42+1.15

Mice were fasted 6 h (n = 8/genotype). *p < 0.05, wt vs. [I-137" mice




Supplementary figures and figure legends
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Supplemental Figure 1

Body weight and insulin responses in chow-fed and insulin signaling in high fat fed 7/-73™" mice
in the BALB/c background. (A) The expression of Il-13 receptors in immune and non-immune
cells determined by real-time PCR. II-13 (and 1I-4) binds to type II receptors consisting of II-
4ro/Il-13ral dimers. 1I-13ra2 is thought to be a decoy receptor. I1-4 also binds to type I
receptors consisting of Il-4ra/yc dimers, which are only expressed in immune cells, such as T
lymphocytes. (B) Body weight and (C) insulin tolerance test (ITT) in wild-type (wt) or //-1 3"
mice in the BALB/c background on a normal chow diet (9% fat). ITT was conducted in 6 month
old animals (n = 5/genotype). (D) Immunoblotting of tissue insulin signaling in high fat fed wt
and 7I-13”" mice in the BALB/c background assessed by insulin stimulated Akt phosphorylation
(n = 8/genotype). Su/kg insulin was i.p. injected and tissues were collected 10 min later. Data are
presented as mean + SEM.
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Supplemental Figure 2

Increased hepatic gluconeogenic gene expression in BALB/c I/-13”" mice on high fat diet. (A)
Metabolic gene expression in the liver. Liver samples from 6 h fasted wt and //-/ 37" mice in the
BALB/c background (n=6, high fat diet for 6 months) were collected and gene expression was
analyzed by quantitative, real-time PCR. (B) Glucose production and gluconeogenic gene
expression are elevated in primary hepatocytes derived from //-1 37 mice (BALB/c on high fat
diet). rll-13 (10 ng/ml) was given to hepatocytes for two hours followed by a 4 hour glucose
production assay in the presence of rll-13. Data are presented as mean + SEM; *p < 0.05.
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Supplemental Figure 3

Assessment of macrophage activation and tissue inflammation in C57BL/6 wt and 1/-1 37" mice
on normal chow (7 month old males). (A) and (B) Gene expression analyses of inflammatory
markers in F4/80" cells isolated from livers and white adipose tissues (WAT) (n = 4). Cells were
isolated using magnetic beads conjugated with anti-F4/80 antibody. Right panel: FACS analyses
to examine the percentage of F4/80" cells in the non-hepatocyte or non-adipocyte fraction and
the expression of Mgll in F4/80" cells. (C) Circulating concentrations of cytokines and
chemokines determined by ELISA (n = 7). (D) WAT histology (sections from 3 individual
mice). Scale bar: 100 um. Data are presented as mean + SEM; *p < 0.05.
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Supplemental Figure 4

Inflammatory and metabolic gene expression in BALB/c wt and /-3 mice on high fat diet.
(A) and (B) Gene expression analyses of inflammatory markers in liver and white adipose tissue
(WAT). Tissue samples from 6 h fasted wt and //-/ 37" mice in the BALB/c background (n = 6,
high fat diet for 6 months) were collected and gene expression was analyzed by quantitative,
real-time PCR. (C) Expression profiling of oxidative metabolism and thermogenic genes in
brown adipose tissue (BAT). Data are presented as mean £ SEM; *p < 0.05.
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Supplemental Figure 5

Assessment of knockout/knockdown efficiency and the role of II-13 in fat metabolism in
hepatocytes. (A) Hepatic expression of //-13 and /I-4 at the fed or fasted state determined by
quantitative real-time PCR (male C57BL/6 mice, n = 5). (B) The expression of Stat3 and Stat6 in
wt, Stat3”" and Stat6™" hepatocytes + rll-13 (10 ng/ml) determined by quantitative real-time
PCR. (C) The expression of Stat3, Stat6 and II-13ral in control (sicontrol), Il-13ral siRNA
(sill-13ral) and Stat3 siRNA (siStat3) transfected hepatocytes + rll-13 (10 ng/ml). (D) 11-4 does
not suppress glucose production. Glucose production assays were conducted in primary
hepatocytes + rll-13 or rll-4 (10 ng/ml). (E) Lipogenic and fatty acid  oxidation assays in wt
and JI-137 hepatocytes = rIl-13. Data are presented as mean + SEM; *p<0.05.



