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Supplementary Section 
 

S1. Theory for FDPM-based Tomographic Reconstruction 
 

This section briefly describes the changes made to the CW-based algorithm for NIRF tomography (Lu et al 2011), 
derived using the third-order simplified spherical harmonics (SP3) approximation to the radiative transfer equation 
(RTE), to allow time-dependent measurements using frequency-domain approach.  As compared to the CW-based 
algorithm, the measured fluence at excitation and emission wavelengths is complex in nature, given by 

],[],[],[ mxjmx
AC

mx eI θφ −= , where ],[ mx denotes the variables at excitation ( ][x ) or emission ( ][m ) wavelengths, 

respectively.  The tissue absorption coefficient can be expressed as mx
mx

a ci ,
],[ /ωμ +

 
, where ],[ mx

aμ  is the absorption 
coefficient of the tissue at the excitation/emission wavelengths in CW mode; ω  is the modulation frequency; and 

mxc ,  is the speed of light at excitation/emission wavelengths within the tissues.   
Using the SP3 approximation along with relevant boundary conditions (Klose et al 2006, Chu et al 2009, Lu et al 

2010), and after a series of deductions, we get 
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where G indicates the relationship matrix between bmJ ,,+ and fluorescent absorption distribution ][ f

aμ ; superscript b

represents the variables present only at the tissue surface; 
bmJ ,,+ is the measurable exiting partial current for the 

emission wavelength and given by 
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where the coefficients 30 ,..., JJ are found in (Klose et al 2006), bm
RJ ,,+ and bm

IJ ,,+ are the real and imaginary parts of 
bmJ ,,+ ; v is the outgoing unit vector normal to the boundary; ],[

2,1
mxϕ are complex variables and denotes the composite 

moments of the Legendre moments for excitation and emission radiances; ][
,
m
iaμ  denotes the i-th (i = 1,2,3) absorption 

coefficients at emission wavelengths and is equal to mx
im

s
m

a cig ,
][][ /)1( ωμμ +−+ ; ][m

sμ  is the tissue scattering 
coefficient at the emission wavelength; and g  is the anisotropic factor.  Rewriting (1) after including complex 
characteristics we get 
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where RG and IG are the real and imaginary parts of G .  When there are multiple illuminations )( vN at different 
positions, we get 
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where 
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We have used limited memory variable metric-bound constrained quasi-Newton method (BLMVM) (Benson et al 

2001) to solve the following least squares problem for fluorescence recovery: 
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where sup,f

aμ is the upper constraint on ][ f
aμ . 

 
S2. Assessment of Measurement Precision 
 
Since accuracy of tomographic reconstructions depends critically on precision of the input data, it is necessary to 
benchmark the precision of the FDPM system by evaluating and reducing the errors associated with measurements of 
IAC and θ.  To assess the errors, a white paper was placed between the laser diode and detector, and illuminated by a 
diffused 5 cm2 homogeneous distribution of excitation light (100 µW/cm2).  A neutral density filter with optical 
density of 5 was placed in front of the camera lens to protect the intensifier from oversaturation as well as to 
maximize the dynamic range of the CCD.  The CCD array was binned down from 1024 x 1024 pixels to 128 x 128 
pixels in order to improve the SNR.  The intensity of the scattered excitation light was measured to assess the 
precision of the IAC and θ measurements.  In order to evaluate improved measurement precision as a function of the 
instrument settings, the CCD integration times were varied between 400 ms, 600 ms, and 800 ms, N was changed 
between 16, 32, 64, and 128, and the experiment was repeated over M times between 5, 10, 20, to 40.  The total data 
acquisition time was the product of M, N, and CCD integration time for each frame, and excludes time required for 
readout and charge digitization.  The STD of IAC and θ values was then evaluated as function of M, N, and integration 
times. The IAC error was calculated by taking the ratio of its STD recorded over M cycles to its mean while the θ error 
was defined as the STD in the measured phase.  The IAC and θ precision were computed on a pixel-by-pixel basis and 
were then averaged over the entire homogeneously illuminated area.  The results are shown in Table S1.   

 
Table S1. Measurement precision represented by IAC and θ errors. 

CCD 
integration 
time (ms) 

Number 
of phase-
delays (N)

Number of 
repeated cycles (M) 

Amplitude (IAC) 
error (±%) 

Phase (θ) 
error (±º) 

Mean IDC  
(excitation 

counts (e.c.))
800 128 5 0.70 0.33 36802 

64 10 0.84 0.49 36864 
32 20 1.21 0.69 37025 
16 40 1.67 0.98 37827 

600 128 5 0.70 0.38 28073 
64 10 0.97 0.56 28053
32 20 1.37 0.81 28154 
16 40 1.95 1.15 28276 

400 128 5 0.82 0.47 18509 
64 10 1.20 0.69 18877 
32 20 1.65 0.97 19224 
16 40 2.37 1.38 19565 
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the improvement in reconstruction quality upon increasing the number of projections, as shown in Figure 7.  It also 
demonstrates that by choosing a suitable thresholding value the surface artifacts that are away from the tissue of 
interest can be removed from the reconstructed image and hence do not contribute meaningfully to the tomography.  

 

 
Figure S3.  Phantom reconstructions imposed with variable thresholding are shown for measurements performed using gantry 
setting, 4-projections, and different phase-delays (N), as shown in Figures 7 (i, k).  A threshold of 80% indicates that the top 80% 
of the maximum reconstructed value has been retained. 
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