Supplementary Section
S1. Theory for FDPM-based Tomographic Reconstruction

This section briefly describes the changes made to the CW-based algorithm for NIRF tomography (Lu et a/ 2011),
derived using the third-order simplified spherical harmonics (SP;) approximation to the radiative transfer equation
(RTE), to allow time-dependent measurements using frequency-domain approach. As compared to the CW-based
algorithm, the measured fluence at excitation and emission wavelengths is complex in nature, given by

¢[X’m]=l[x’cm]e_j9[x’m], where [x,m]denotes the variables at excitation ([x]) or emission ([m]) wavelengths,

respectively. The tissue absorption coefficient can be expressed as ,a " viwlc where ™™ is the absorption

xX,m >
coefficient of the tissue at the excitation/emission wavelengths in CW mode; « is the modulation frequency; and

¢, ., 18 the speed of light at excitation/emission wavelengths within the tissues.
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Using the SP; approximation along with relevant boundary conditions (Klose et al 2006, Chu et al 2009, Lu et al
2010), and after a series of deductions, we get
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where G indicates the relationship matrix between J and fluorescent absorption distribution ,u[f I; superscript b
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represents the variables present only at the tissue surface; is the measurable exiting partial current for the

emission wavelength and given by
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where the coefficients J,,,..., Jyare found in (Klose et al 2006), J 5’ 2 and J; £ are the real and imaginary parts of

JEmb .y s the outgoing unit vector normal to the boundary; (pl); are complex variables and denotes the composite

moments of the Legendre moments for excitation and emission radiances; ,u['”] denotes the i-th (i = 1,2,3) absorption

[m]

coefficients at emission wavelengths and is equal to ,uam + ,usm (-gHh+im/ Cems M, 1s the tissue scattering

coefficient at the emission wavelength; and g is the anisotropic factor. Rewriting (1) after including complex
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where Gpand Gjare the real and imaginary parts of G. When there are multiple illuminations (V) at different

characteristics we get

positions, we get
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We have used limited memory variable metric-bound constrained quasi-Newton method (BLMVM) (Benson ef al
2001) to solve the following least squares problem for fluorescence recovery:

2
min@(ul/y: ”A,uc[lf] —J}r’””bu subject to 0< uL/ < /5P | (6)

where u;+*"? is the upper constraint on gL/

S2. Assessment of Measurement Precision

Since accuracy of tomographic reconstructions depends critically on precision of the input data, it is necessary to
benchmark the precision of the FDPM system by evaluating and reducing the errors associated with measurements of
Iyc and 0. To assess the errors, a white paper was placed between the laser diode and detector, and illuminated by a
diffused 5 cm” homogeneous distribution of excitation light (100 pW/cm?). A neutral density filter with optical
density of 5 was placed in front of the camera lens to protect the intensifier from oversaturation as well as to
maximize the dynamic range of the CCD. The CCD array was binned down from 1024 x 1024 pixels to 128 x 128
pixels in order to improve the SNR. The intensity of the scattered excitation light was measured to assess the
precision of the /- and 8§ measurements. In order to evaluate improved measurement precision as a function of the
instrument settings, the CCD integration times were varied between 400 ms, 600 ms, and 800 ms, N was changed
between 16, 32, 64, and 128, and the experiment was repeated over M times between 5, 10, 20, to 40. The total data
acquisition time was the product of M, N, and CCD integration time for each frame, and excludes time required for
readout and charge digitization. The STD of /¢ and 8 values was then evaluated as function of M, N, and integration
times. The /¢ error was calculated by taking the ratio of its STD recorded over M cycles to its mean while the 8 error
was defined as the STD in the measured phase. The I, and 8 precision were computed on a pixel-by-pixel basis and
were then averaged over the entire homogeneously illuminated area. The results are shown in Table S1.

Table S1. Measurement precision represented by /¢ and 6 errors.

CCD Number Number of Amplitude (14c) Phase (6) Mean Ipc¢
integration of phase- repeated cycles (M) error (%) error (z°) (excitation
time (ms) delays (N) counts (e.c.))
800 128 5 0.70 0.33 36802

64 10 0.84 0.49 36864
32 20 1.21 0.69 37025
16 40 1.67 0.98 37827
600 128 5 0.70 0.38 28073
64 10 0.97 0.56 28053
32 20 1.37 0.81 28154
16 40 1.95 1.15 28276
400 128 5 0.82 0.47 18509
64 10 1.20 0.69 18877
32 20 1.65 0.97 19224
16 40 2.37 1.38 19565




Furthermore, Figure S1 shows that upon capturing more photons through increased CCD integration times or
upon use of higher intensifier gain the /,¢ (Figure S1(a)) and 8 (Figure S1(b)) errors reduce considerably implying
the positive influence of higher SNR on measurement precision.
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Figure S1. Effect of increased photon counts on measurement precision. (a) /¢ error (defined as the ratio of STD in /¢
recorded over M cycles to its mean Ipc), and (b) 6 error (defined as STD in phase over M cycles) plotted as a function of Ipc over
the entire image intensifier area.

Figure S2(a) shows the Ipc SNR plotted as a function of Ip¢ in order to analyze the noise sources affecting the
measurements. SNR for any given pixel was determined by calculating the ratio of /pc to STD of Ipc measured over
M number of images per phase-delay, where /pc is the average intensity of the pixel. It can be observed that the plot
(Figure S2(a)) shows a linear dependence between the /pc SNR and mean Ipc. For better visualization, the mean Ipc
data points were grouped together into smaller bins, as seen in Figure S2(b), with each bin having a length of 200
counts along the x-axis. All the data points in that bin were then averaged. Thus, any given data point along the x-
axis in Figure S2(b) represents an average of the mean /¢ data points collected in that bin for which max(mean /p¢)
— min(mean Ipc) < 200 counts. The y-axis represents the average of the /pc SNR data points corresponding to the
mean Ipc data points collected in that bin. In addition, for comparison, a graph with ‘+’ data-markers plots square
root of the binned mean Ipc data as a function of the binned mean /pc. This plot runs parallel to the /pc SNR for
mean /pc >5000 counts and implies that the /pc SNR displays square-root dependence that is typical of photon-noise-
limited operation for the ICCD detectors (Frenkel et a/ 1997). The result therefore indicates that photon-noise is the
major noise source limiting the detection ability of ICCD detectors.
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Figure S2. Photon-noise limited operation for ICCD detectors. (a) Relationship between the /pc SNR and mean I data.
The data was gathered over the entire image intensifier area using 800 ms CCD integration time measured with N = 64. For
better comprehension the data from (a) was collected in bins, averaged, and plotted in (b) as represented by marker ‘®’ (red
color). The plot with ‘“+’ (blue color) marker indicates the square-root of the binned mean /¢ data.

S3. Tomographic Imaging in Phantoms with Varying Thresholds

Figure S3 highlights the effect of thresholding on the reconstructed figure quality. As a specific example, we
have chosen reconstruction results obtained from measurements performed in gantry setting with 4-projections, as
shown in Figure 7. Figure S3 shows phantom reconstructions by imposing variable thresholding (top 80-100% of the
maximum reconstructed value). It can be observed that in the absence of thresholding (100%) additional
reconstructed volumes can be seen on the phantom surface as well as few around the actual target within the tissue.
The values on these reconstructed artifacts are very small. However, their presence makes it difficult to appreciate
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the improvement in reconstruction quality upon increasing the number of projections, as shown in Figure 7. It also
demonstrates that by choosing a suitable thresholding value the surface artifacts that are away from the tissue of
interest can be removed from the reconstructed image and hence do not contribute meaningfully to the tomography.
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Figure S3. Phantom reconstructions imposed with variable thresholding are shown for measurements performed using gantry
setting, 4-projections, and different phase-delays (), as shown in Figures 7 (i, k). A threshold of 80% indicates that the top 80%
of the maximum reconstructed value has been retained.
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