CHEMBIOCHEM

Supporting Information

© Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2012

Unusual C=C Bond Isomerization of an α , β -Unsaturated γ -Butyrolactone Catalysed by Flavoproteins from the Old Yellow Enzyme Family

Katharina Durchschein,^[a] Silvia Wallner,^[b] Peter Macheroux,^[b] Klaus Zangger,^[a] Walter M. F. Fabian,^[a] and Kurt Faber^{*[a]}

cbic_201200475_sm_miscellaneous_information.pdf

Electronic Supporting Information

C=C-Bond isomerization/cyclization in β -carotene biosynthesis	S2
Source of chemicals, cofactors and enzymes	S2
Theoretical calculations	S3
Isomerization under inert atmosphere	S3
Deuterium labelling studies	S4
Analytical methods	S5
References	S6

Scheme S1. C=C-Bond isomerization/cyclization in β -carotene biosynthesis catalyzed by carotene *cis-trans* isomerase (CrtIso) and lycopene cyclase (CrtY).

Source of chemicals, cofactors and enzymes

α-Methylene-γ-butyrolactone (**1a**), 3-methyl-furan2(5H)-one (**2a**), *rac*-α-methyl-γ-butyrolactone (**1b**) and bovine albumin were purchased from Sigma Aldrich, glucose and NAD⁺ were from Fluka. NADH and NADPH were from AppliChem and NADP⁺ was from Biocatalytics. Glucose-6-phosphate and glucose-6-phosphate dehydrogenase were obtained from Biochemica and glucose dehydrogenase were obtained from Jülich Chiral Solutions. *i*-Propanol-d₈ (label >99%) was from Sigma Aldrich.

Preparation of enzymes

OPR1 from *Lycopersicon esculentum*, Yqj $M^{[1,2,3]}$ and Yhd $A^{[4]}$ from *Bacillus subtilis* were overexpressed and purified as previously reported. Cloning and purification of OYEs from yeasts (OYE1 from *Saccharomyces carlsbergensis*, OYE2 and OYE3 from *Saccharomyces cerevisiae*) and nicotinamide-dependent cyclohexenone reductase (NCR) from *Zymomonas mobilis* was performed according to literature.^[5,6] Xenobiotic reductases A (XenA) and B (XenB) from *Pseudomonas putida* and *P. fluorescens*, respectively,^[7] and estrogen-binding protein (EBP1) from

Candida albicans were obtained as recently published.^[8] KYE was provided by A. Bommarius (Georgia Institute of Technology, Atlanta, USA), the expression and purification was followed according to the published protocol^[9] with an additional gel filtration step using Superdex 75. Yend was cloned, expressed and purified according to the literature.^[10]

Theoretical calculations

Geometries were optimized by second order perturbation theory^[11] using Dunning's double-zeta correlation consistent basis set^[12] (MP2/cc-pVDZ). Zero point energy and thermal corrections to Gibbs free energies were obtained by the standard harmonic oscillator-rigid rotor approximation using the same level of theory. The complete basis set limit (MP2/CBS) was estimated using Martin's extrapolation scheme^[13] in combination with the cc-pVnZ, n = 2-4, basis set. Higher electron correlation effects were estimated by coupled-cluster calculations^[14] in combination with a two-point extrapolation^[15] to the basis set limit [CCSD(T)/cc-pVnZ, n = 2-3]. Solvent effects (aqueous solution) were estimated by the SM8 solvation model^[16] using the M06-2X density functional^[17] in combination with the 6-31+G(d,p) basis set.^[18] Programs used were: NWChem 6.0,^[19] GAMESSPLUS,^[20] and MOLDEN^[21] for visualization. The Δ G of the isomerization reaction of **1a** to **2a** was determined to be -9 kcal/mol.

Method	Gas phase	Aqueous solution
MP2/CBS	8.7	9.5
CCSD(T)/CBS	8.0	8.8

Table S1. Gibbs free energies $[kcal mol^{-1}]$ of isomerization of **1a** to **2a**.

Isomerization under inert atmosphere

An aliquot of enzyme (OYE2, final protein concentration 10 μ M) in Tris-HCl buffer solution (50 mM, pH 7.5) was mixed with equal amounts of NADH (10 μ M) to fully reduce the flavin cofactor. The reduced enzyme solution was then supplemented with substrate **1a** at various concentrations (0.1 mM - 20 mM) and reaction mixtures were incubated at 30 °C and 120 rpm in an oxygen-free atmosphere in a glove box (Belle Technology, ~0.8 ppm O₂). After 24 h the reactions were stopped and the product was extracted with EtOAc (2 × 0.5 mL). The combined organic phases were dried over Na₂SO₄ and analysed on achiral GC to determine the conversion.

Substrate [mM]	Product [µM]
0.5	30
1	30
5	50
10	400
20	1400

Table S2. Isomerization of **1a** to **2a** using equimolar amounts of NADH (10 μ M) and OYE2 (10 μ M) under exclusion of O₂.

Reaction conditions: NADH (10 μ M), OYE2 (10 μ M), **1a** (0.5 - 20 mM), 24 h, N₂ atmosphere; n.d. = not determined;

Deuterium labeling studies

For up-scaling of the biotransformation of **1a**, 60 samples were prepared in the following way: an aliquot of enzyme (OYE2 200 μ g/mL) was added to a Tris-HCl D₂O buffer solution (0.8 mL, 50 mM, pH 7.5) containing the substrate (10 mM), the cofactor NAD⁺ (100 μ M), the recycling-system ADH-A (10 U), *i*-propanol-d₈ (15 mM). The mixture was shaken at 30 °C and 120 rpm. After 48h the products were extracted with CDCl₃ (2 × 0.5 mL). The combined organic phases were dried over Na₂SO₄ and analysed via ¹³C- and ²H-NMR. For the acquisition of ²H spectra CDCl₃ was evaporated and replaced by CHCl₃.

α-Methylene-γ-butyrolactone (1a): ¹H-NMR (300MHz, CDCl₃): δ 2.94-2.99 (2H, m), 4.36 (CH₂-O, t, J=7.35), 5.66 (1H, s), 6.23 (1H, s); ¹³C-NMR (75MHz, CDCl₃): δ 27.38, 65.34, 122.3, 133.6, 170.8. NMR data corresponded to literature.^[22, 23]

3-Methylfuran-2(5H)-one (**2a**): ¹H-NMR (300MHz, CDCl₃): δ 1.91 (3H, m), 4.74 (2H, m), 7.13 (1H, m); ¹³C-NMR (75MHz, CDCl₃): δ 10.76, 70.12, 129.93, 145.11, 174.96. NMR data corresponded to literature.^[24] For partially deuterated **2a**: ¹³C-NMR (700MHz, CDCl₃): δ 10.70 (CH₃), 10.35, 10.46, 10.57 (CH₂-D), 70.02 (OCH₂), 129.92 (CH=C), 144.95 (C=CH), 174.96 (CO). **a-Methyl-γ-butyrolactone** (**1b**): ¹H-NMR (300MHz, CDCl₃): δ 1.27 (3H, d, J=7.02), 1.87-1.97 (1H, m), 2.37-2.46 (1H, m), 2.55-2.63 (1H, m), 4.13-4.21 (1H, m), 4.29-4.36 (1H, m); ¹³C-NMR (75MHz, CDCl₃): δ 15.28, 30.81, 34.26, 66.37, 180.3. NMR data corresponded to literature.^{[25] 2}H-NMR (46 MHz, CHCl₃): δ 2.66, 4.80.

Table	S3 .	² H-La	beling	experiment	ts.
			0	- r	

Conditions	Products (relative amounts) ^[a]
D ₂ O Tris-HCl 50mM pH 7.5/ OYE2/1 a /NADH ^[b]	$ \begin{array}{c} 0 \\ 0 \\ 0 \\ 3 \end{array} \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{array} \begin{array}{c} 0 \\ 0 \\ trace \end{array} \begin{array}{c} 0 \\ 0 \\ trace \end{array} \begin{array}{c} 0 \\ 0 \\ trace \end{array} $
H ₂ O Tris-HCl 50mM pH 7.5/ OYE2/ 1a / <i>i</i> -PrOH-d ₈ /ADH-A/NAD ^{+ [c]}	0 0 0 0 0 0 0 0 0 0
D ₂ O Tris-HCl 50mM pH 7.5/ OYE2/1 a / <i>i</i> -PrOH-d ₈ /ADH-A/NAD ^{+ [d]}	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array}\\ \end{array} \end{array} $

^[a] Monitored via ¹³C-NMR (700MHz spectrometer) and ²H-NMR (300 MHz spectrometer); ^[b] H/Dscrambling of FMNH₂ with D₂O involves deuteration on C4 of **2a**; ^[c] H/D-scrambling between FMND₂ or FMNHD in H₂O is not visible; ^[d] no H/D-scrambling.

Analytical methods

GC-MS analyses were performed on a HP 6890 Series GC system equipped with a 5973 mass selective detector and a 7683 Series injector using a (5%-phenyl)-methylpolysiloxane capillary column (HP-5Msi, 30 m x 0.25 mm, 0.25 μ m film). GC-FID analyses were carried out on a Varian 3800 using H₂ as carrier gas (14.5 psi). HPLC analyses were performed on a Shimadzu system equipped with a Chiralcel OD-H column (25 cm x 0.46 cm).

Determination of conversion

Substrate	Column	Program	Compound	T _{ret} [min]	Compound	T _{ret} [min]
1a	А	а	1a	9.23	1b	7.87
2a	А	а	2a	9.02	1b	7.87
1a	В	b	1a	7.08-7.09	1b	6.72-6.75
2a	В	b	2a	6.98-7.03	1b	6.72-6.75

Table S3 Determination of conversion via achiral GC-analyses.

Columns:

A = DB-1701 (14 % cyanopropyl-phenylphase capillary column, 30 m x 0.25 mm, 0.25 μ m film), H₂ as carrier gas (14.5 psi), detector temperature 250 °C, split ratio 20:1.

B= GC-MS, HP-5 Msi (5%-phenyl-methylpolysiloxane capillary column, 30 m x 0.25 mm, 0.25 μ m film), 0.69 psi H₂ as carrier gas, front inlet temperature 250 °C, split ratio 90:1. Programs:

a = 110 °C, hold 5 min, 30 °C/min to 200 °C, hold 2 min.

b = 40 °C, hold 2 min, 20 °C/min to 180 °C, hold 1 min.

Table S4.	. Determ	ination of	enanti	omeric	excess via	chiral	GC-	and HPLC	C-analyses.
-----------	----------	------------	--------	--------	------------	--------	-----	----------	-------------

			Substrate	Product		
Substrate	Column	Conditions _	(1a, 2a)	1b		
	Corumn		T [min]	T _{ret} [min]	T _{ret} [min]	
				(R)	(S)	
1a	С	с	n.d	1b 63.92	1b 69.31	
	D	d	1a 20.4	1b 15 40	1 h 15 21	
			2a 19.38	10 13.40	10 13.21	
	Б	đ	1a 11.61	1b 11 7 2	1b 10.82	
	Ľ	u	2a 11.44	10 11.23		
2a	С	c	n.d	1b 63.92	1b 69.31	
	D	d	2a 19.38	1b 15.40	1b 15.21	
	Е	d	2a 11.44	1b 11.23	1b 10.82	

n.d. not determined.

Columns:

C = HPLC analysis employing a Chiralcel OD-H column (25 cm x 0.46 cm).

D = GC-analysis using a trifluoroacetyl β -cyclodextrin capillary column, detector temperature 200

°C, split ratio 20:1, H_2 as carrier gas (14.5 psi)

E = GC-analysis using a hydrodex- β -6TBDM capillary column, detector temperature 200 °C, split

ratio 20:1, H_2 as carrier gas (14.5 psi)

Conditions:

c = n-heptane/2-propanol 99:1, 0.25 mL/min, detection at 216 nm.

d = 120 °C, hold 20 min, 15 °C/min to 180 °C, hold 2 min.

References

- [1] C. Breithaupt, R. Kurzbauer, H. Lilie, A. Schaller, J. Strassner, R. Huber, P. Macheroux, T. Clausen, Proc. Natl. Acad. Sci. USA 2006, 103, 14337-14342.
- [2] K. Kitzing, T. B. Fitzpatrick, C. Wilken, J. Sawa, G. P. Bourenkov, P. Macheroux, T. Clausen,

J. Biol. Chem. 2005, 280, 27904-27913.

- [3] M. Hall, C. Stueckler, W. Kroutil, P. Macheroux, K. Faber, Angew. Chem. Int. Ed. 2007, 46, 3934-3937.
- [4] S. Deller, S. Sollner, R. Trenker-El-Toukhy, I. Jelesarov, G. M. Gübitz, P. Macheroux, Biochemistry 2006, 45, 7083-7091.
- [5] M. Hall, C. Stueckler, B. Hauer, R. Stuermer, T. Friedrich, M. Breuer, W. Kroutil, K. Faber, *Eur. J. Org. Chem.* 2008, 1511-1516.
- [6] A. Müller, B. Hauer, B. Rosche, Biotechnol. Bioeng. 2007, 98, 22-29.
- [7] D. S. Blehert, B. G. Fox, G. H. Chambliss, J. Bacteriol. 1999, 181, 6254-6263.
- [8] J. Buckman, S. M. Miller, *Biochemistry* 1998, 37, 14326-14336.
- [9] J. F. Chaparro-Riggers, T. A. Rogers, E. Vazquez-Figueroa, K. M. Polizzi, A. S. Bommarius, Adv. Synth. Catal. 2007, 349, 1521-1531.
- [10] A. Morokutti, A. Lyskowski, S. Sollner, E. Pointner, T. B. Fitzpatrick, C. Kratky, K. Gruber, P. Macheroux, *Biochemistry* 2005, 44, 13724-13733.
- [11] C. Møller, M. S. Plesset, Phys. Rev. 1934, 46, 618-622.
- [12] (a) T. H. Dunning, J. Chem. Phys. 1989, 90, 1007-1023; (b) R. A. Kendall, T. H. Dunning, R. J. Harrison, J. Chem. Phys. 1992, 96, 6796-6806.
- [13] J. M. L. Martin, Chem. Phys. Lett. 1996, 259, 669-678.
- [14] R. J. Bartlett, In Coupled-Cluster Theory: An Overview of Recent Developments; D. R.
 Yarkony, Ed.; Advanced Series in Physical Chemistry: Modern Electronic Structure Theory;
 World Scientific Publishing Co., Singapore, 1995, Vol. 2, pp. 1047-1131.
- [15] S. K. Min, E. C. Lee, H. M. Lee, D. Y. Kim, D. Kim, K. S. Kim, J. Comput. Chem. 2008, 29, 1208-1221.
- [16] a) C. J. Cramer, D. G. Truhlar, Acc. Chem. Res. 2008, 41, 760–768; b) A. V. Marenich, R. M.
 Olson, C. P. Kelly, C. J. Cramer, D. G. Truhlar, J. Chem. Theory Comput. 2007, 3, 2011–2033.
- [17] a) Y. Zhao, D. G. Truhlar, *Theor. Chem. Acc.* 2008, 120, 215-241; b) Y. Zhao, D. G. Truhlar, Acc. Chem. Res. 2008, 41, 157-167.
- [18] a) W. J. Hehre, R. Ditchfield, J. A. Pople, J. Chem. Phys. 1972, 56, 2257-2261; b) T. Clark, J. Chandrasekhar, G. W. Spitznagel, P. v. R. Schleyer, J. Comp. Chem. 1983, 4, 294-301; c) R. Krishnan, J. S. Binkley, R. Seeger, J. A. Pople, J. Chem. Phys. 1980, 72, 650-654; d) P. M. W. Gill, B. G. Johnson, J. A. Pople, M. J. Frisch, Chem. Phys. Lett. 1992, 197, 499-505;
- [19] M. Valiev, E. J. Bylaska, N. Govind, K. Kowalski, T. P. Straatsma, H. J. J. Van Dam, D. Wang, J. Nieplocha, E. Apra, T. L. Windus, W. A. de Jong, *Comput. Phys. Commun.* 2010, 181, 1477-1489.

- [20] a) M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. Su, T. L. Windus, M. Dupuis, J. A. Montgomery, J. Comput. Chem. 1993, 14, 1347–1363; b) M. Higashi, A. V. Marenisch, R. M. Olson, A. C. Chamberlin, J. Pu, C. P. Kelly, J. D. Thompson, J. D. Xidos, J. Li, T. Zhu, G. D. Hawkins, Y. Y. Chuang, P. L. Fast, B. J. Lynch, D. A. Liotard, D. Rinaldi, J. Gao, C. J. Cramer, D. G. Thruhlar, *GAMESSPLUS Version 2009*, University of Minnesota, Minneapolis, 2009.
- [21] G. Schaftenaar, J. H. Noordik, J. Comput.-Aided Mol. Des. 2000, 14, 123-134.
- [22] H. Saimoto, K. Nishio, H. Yamamoto, M. Shinoda, Bull. Chem. Soc. Jpn. 1983, 56, 3093-3098.
- [23] L. P. Christensen, Photochemistry 1999, 51, 969-974.
- [24] J. Boukouvalas, R. P. Loach, J. Org. Chem. 2008, 73, 8109-8112.
- [25] B. B. M. Ostermeier, C. Korff, G. Helmchen, Eur. J. Org. Chem. 2003, 17, 3453-3459.