The *distinguishing substring selection* problem (DSSP) has been proven to be NP-complete, and it is defined as follows:

Input:

- A set $S_g = \{s'_1, s'_2, \ldots, s'_n\}$ of n_1 (good) strings of length at least *L*.
- A set $S_b = \{s_1, s_2, \ldots, s_{n2}\}$ of n_2 (bad) strings of length at least *L*.
- \bullet Two non-negative integers d_g and d_b , $d_g > d_b$.

Output:

Find a string *x* such that each string $s_i \in S_b$ has at least a length *L* substring v_i of s_i with $HD(x, v_i) \le d_b$, and for every string $s'_i \in S_g$, $HD(x, v'_i) \ge d_g$ for each length-*L* substring *v′ⁱ* of *s′i*.

The *qualified sequence finding problem* is defined as follows:

Input:

Given a set of *n* candidate-genes, $C = \{c_1, c_2, \ldots, c_n\}$, a set of *m*

excluded-genes, $E = \{e_1, e_2, \dots, e_m\}$, and three integers *L*, d_N and d_T , $L > d_N > d_T$.

Output:

Find a sequence *r* of length *L* such that there exists a subset of candidate-genes *T*, $T \subseteq C$, and for each gene $t_i \in T$, $HD(r, u_i) \le d_T$ for some length *L* substring u_i of t_i and for each gene $g_i \in \{E \cup C - T\}$, $HD(r, u_i) \ge d_N$ for any length *L* substring *u′ⁱ* of *gi*.

*Theorem 1***.** The problem of finding a qualified sequence *r* maximizing the size of *T* is NP-complete.

Proof.

1. Finding a qualified sequence *r* maximizing the size of *T* is in NP.

Given a qualified sequence *r*, we can verify the sequence and obtain the size of *T* in polynomial time. We compute the Hamming distance between *r* and all subsequences, which are enumerated from the candidate-genes and the excluded-genes by a sliding window. Next, we examine whether r is within a d_T distance to some candidate-gene(s) and has at least a d_N distance to all of the other genes. If *r* meets the above conditions, then *r* is valid, and the size of *T* is the number of candidate-genes that are within d_T distance to *r*. Otherwise, *r* is invalid, and the size of *T* is zero.

2. Reduce the DSSP to the problem of finding a qualified sequence *r* maximizing the size of *T*.

Given an instance *I* of DSSP, we construct an instance *F* of finding a qualified sequence *r* maximizing the size of *T* as follows. Let $C=S_b$, $E=S_g$, $d_N=d_g$ and $d_T=d_b$. Obviously, this can be done in polynomial time. Now, we show that there is a string *x* that meets the conditions for instance *I* if and only if there is a valid sequence *r* maximizing the size of *T* and $T = C$ for instance *F*.

First, suppose there is a string *x* such that each string $s_i \in S_b$ has at least a length *L* substring v_i of s_i with $HD(x, v_i) \le d_b$ and in every string $s_i \in S_g$ for each length *L* substring v'_i of s'_i , $HD(x, v'_i) \ge d_g$. Define sequence $r = x$ and $T = S_b$. Obviously, each sequence $t_i \in T$ has a length *L* substring u_i of t_i with $HD(r, u_i) \le d_T$ in every sequence $g_i \in \{E \cup C - T\}$ for each length *L* substring u'_i of g_i , $HD(r, u'_i) \ge d_N$, and the size of *T* is maximum.

Conversely, suppose there is a sequence r and T , where $T = C$ such that each string $t_i \in T$ has a length *L* substring u_i of t_i with $HD(r, u_i) \le d_T$, and for every string $g_i \in \{E \cup C - T\}$, $HD(r, u_i) \ge d_N$ for each length *L* substring u_i of g_i . Define string $x = r$. Obviously, each string $s_i \in S_b$ has a length *L* substring v_i of s_i with

 $HD(x, v_i) \le d_b$ and for every string $s'_i \in S_g$, for any length-*L* substring v'_i of s'_i , *HD*(*x*, *v'*_{*i*}</sub> $) \ge d_g$.

Because DSSP can be reduced to the problem of finding a qualified sequence *r* maximizing the size of *T* in polynomial time, finding a qualified sequence *r* maximizing the size of *T* is an NP-complete problem.