

LEM3	Membrane protein of the plasma membrane and ER, interacts specifically in vivo with the phospholipid translocase (flippase) Dnf1p; involved in translocation of phospholipids and alkylphosphocholine drugs across the plasma membrane.
THI73	Putative plasma membrane permease proposed to be involved in carboxylic acid uptake and repressed by thiamine; substrate of Dbf2p/Mob1p kinase; transcription is altered if mitochondrial dysfunction occurs
PUN1	Plasma membrane protein with a role in cell wall integrity; co-localizes with Sur7p in punctate membrane patches; null mutant displays decreased thermotolerance; transcription induced upon cell wall damage and metal ion stress
FUS1	Membrane protein localized to the shmoo tip, required for cell fusion; expression regulated by mating pheromone; proposed to coordinate signaling, fusion, and polarization events required for fusion; potential Cdc28p substrate
ROD1	Membrane protein that binds the ubiquitin ligase Rsp5p via its 2 PY motifs; overexpression confers resistance to the GST substrate o-dinitrobenzene,zinc, and calcium; proposed to regulate the endocytosis of plasma membrane proteins
SSO1	Plasma membrane t-SNARE involved in fusion of secretory vesicles at the plasma membrane and in vesicle fusion during sporulation; forms a complex with Sec9p that binds v-SNARE Snc2p; syntaxin homolog; functionally redundant with Sso2p
SSO2	Plasma membrane t-SNARE involved in fusion of secretory vesicles at the plasma membrane; syntaxin homolog that is functionally redundant with Sso1p
YPS1	Aspartic protease, member of the yapsin family of proteases involved in cell wall growth and maintenance; attached to the plasma membrane via a glycosylphosphatidylinositol (GPI) anchor
PSR2	Functionally redundant Psr1p homolog, a plasma membrane phosphatase involved in the general stress response; required with Psr1p and Whi2p for full activation of STRE-mediated gene expression, possibly through dephosphorylation of Msn2p
PMP3	Small plasma membrane protein related to a family of plant polypeptides that are overexpressed under high salt concentration or low temperature, not essential for viability, deletion causes hyperpolarization of the plasma membrane potential
YPS3	Aspartic protease, member of the yapsin family of proteases involved in cell wall growth and maintenance; attached to the plasma membrane via a glycosylphosphatidylinositol (GPI) anchor
SNC2	Vesicle membrane receptor protein (v-SNARE) involved in the fusion between Golgi-derived secretory vesicles with the plasma membrane; member of the synaptobrevin/VAMP family of R-type v-SNARE proteins
LDB19	Protein involved in regulating the endocytosis of plasma membrane proteins by recruiting the ubiquitin ligase Rsp5p to its target; localization changes in response to nutrient levels; null mutant has reduced affinity for alcian blue dye
SUR7	Plasma membrane protein that localizes to furrow-like invaginations (MCC patches); component of eisosomes; associated with endocytosis, along with Pil1p and Lsp1p; sporulation and plasma membrane sphingolipid content are altered in mutants
TPN1	Plasma membrane pyridoxine (vitamin B6) transporter; member of the purine-cytosine permease subfamily within the major facilitator superfamily; proton symporter with similarity to Fcy21p, Fcy2p, and Fcy22p

b

GFP-Lact-C2

b

TC-Cdc42

Rdi1-6XHis

b

SD-LEU, 23ºC, 4 days

SGal-LEU, 23ºC, 4 days

а

Type of file: tableLabel:Table 1Filename:2011-1023-LIBPB-325 SupplementaryTable1.xlsx

Strains RLY 2530 RLY3458 **RLY3556** RLY3557 RLY3811 RLY3856 RLY3857 **RLY3858** RLY4153 **RLY4154** RLY4155 RLY4273 RLY4277 RLY4300 RLY4796 RLY4797 RLY4826 RLY4839 RLY4875 RLY4921 RLY4922 RLY4923 RLY6593 RLY6617 RLY6766 **RLY6768** RLY6875 RLY6907 **RLY6908 RLY6909 RLY7104 RLY7498 RLY7544 RLY7550** RLY7551 RLY7552 RLY7553

All the strains were o

* All strains used in t

Genotype* $his3\Delta 1$; $leu2\Delta 0$; $met15\Delta 0$; $ura3\Delta 0$ RDI1-mCHERRY::HIS pGAll-GFP-myc6-CDC42^{R66E} CEN URA3 RDI1-mCHERRY::HIS5 pGAll-GFP-myc6-CDC42^{C1885} CEN URA3 RDI1-mCHERRY::HIS5 pGAL1-RDI1 CEN HIS5 LEM3-GFP::HIS5 DNF1-GFP::HIS5 DNF2-GFP::HIS5 *lem3* Δ :: *KAN pRL369(pCDC42-GFP-myc6-CDC42/pRS306 URA3)* dnf1 Δ :: KAN pRL369(pCDC42-GFP-myc6-CDC42/pRS306 URA3) dnf2A :: KAN pRL369(pCDC42-GFP-myc6-CDC42/pRS306 URA3) lem3∆ :: KAN pRL369(pCDC42-GFP-myc6-CDC42/pRS306 URA3) pGAL1-RDI1 CEN HIS5 pRL369(pCDC42-GFP-mvc6-CDC42/pRS306 URA3) pRL369(pCDC42-GFP-myc6-CDC42/pRS306 URA3 pGAL1-RDI1 CEN HIS5 pGAll-GFP-mvc6-CDC42^{S185A} CEN URA3 pGAll-GFP-myc6-CDC42^{S185K} CEN URA3 rdi1A :: LEU2 pGAL1-GST-HA-FlASH-CDC42/pRS316 URA3) pGAll-GFP-myc6-CDC42^{S185D} CEN URA3 CEN LEU2 lem3∆ :: KAN pGAl1-GFP-mvc6-CDC42^{S185K} CEN URA3 lem3∆ :: KAN pGAl1-GFP-myc6-CDC42^{S185D} CEN URA3 lem3∆ :: KAN pGAl1-GFP-myc6-CDC42 SI85A CEN URA3 dnf1 Δ :: KAN dnf2 Δ :: KAN pRL369(pCDC42-GFP-myc6-CDC42/pRS306 URA3) $lem3\Delta$:: KAN ; $rdi1\Delta$:: LEU2 pRL369(pCDC42-GFP-myc6-CDC42/pRS306 URA3) GFP-LACT-C2 CEN URA3 $lem3\Delta$:: KAN GFP-LACT-C2 CEN URA3 pCDC42-mCHERRY-CDC42/pRS305 LEU2 GFP-LACT-C2 CEN URA3 GFP-PHx2-PLCd CEN URA $lem3\Delta$:: KAN GFP-PHx2-PLCd CEN URA $lem3\Delta$:: KAN BNI1-GFP::HIS5 rdi1A :: LEU2 pRL369(pCDC42-GFP-myc6-CDC42/pRS306 URA3) pil1A :: KAN pRL369(pCDC42-GFP-myc6-CDC42/pRS306 URA3) $lem3\Delta$:: KAN CEN LEU2 pGAL1-RGA1 CEN LEU2 (colony1) pGAL1-RGA1 CEN LEU2 (colony2) $lem3\Delta$:: KAN pGAL1-RGA1 CEN LEU2 (colony1) $lem3\Delta$:: KAN pGAL1-RGA1 CEN LEU2 (colony2)

riginally created for this study except RLY3557¹ and RLY3856-RLY3858².

this study are the derivatives of S288C background with the following genotype: MATa his 3Δ 1;leu 2Δ 0;me

Slaughter, B. D., Das, A., Schwartz, J. W., Rubinstein, B. & Li, R. Dual modes of Cdc42 recycling finetune polarized morphogenesis. *Dev. Cell* **17**, 823-835 (2009). Huh, W. K. *et al.* Global analysis of protein localization in budding yeast. *Nature* **425**, 686-691 (2003).

t15 Δ 0;ura3 Δ 0