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Supplementary Information for Figure 6: Simulations of non-competitive and
competitive GR and PR-B promoter binding

Figure 6A presents non-competitive simulations of GR and PR-B binding to the GRE,

promoter, calculating the probability (P) of the fully-ligated promoter:
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where x, is the free receptor monomer concentration, Ky is the total binding affinity for
saturating a single response element with two receptor monomers, and & inter 1S the inter-
site cooperativity between receptors bound to adjacent palindromic response elements.
Note that because these are simulations of non-competitive receptor-promoter binding,
the denominator of each equation (Q or the partition function) only describes binding

interactions for a single receptor (GR or PR-B).



Figure 6B presents competitive simulations of GR and PR-B pre-formed dimer binding

to the GRE, promoter using the following equations:
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where Q is now defined as:
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and xg; is the concentration of receptor dimer, A inter 1S the inter-site cooperativity between
receptors bound to adjacent palindromic response elements, and kin 4 is the intrinsic
affinity of a pre-formed receptor dimer for DNA. Note that the denominator (Q) has been

expanded to include all possible binding interactions for both GR and PR-B.

Figure 6C presents a competitive simulation of GR and PR-B monomer binding to the

GRE; promoter using the following probability of saturation (P) equations:
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Q is defined as:
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where x, is the free receptor monomer concentration, A inter 1S the inter-site cooperativity
between receptors bound to adjacent palindromic response elements, A intra 1S the intra-
site cooperativity between two monomers bound to the same response element, and Kint.m

is the intrinsic affinity of a monomeric receptor for DNA.

Figure 6D presents a competitive simulation of GR and PR-B monomer binding to a
promoter consisting of a single palindromic response element and a half-site. We assume
that receptor monomers can cooperatively interact with receptor dimers bound at another
palindromic site with a cooperative term equivalent to that of adjacently bound dimers

(ke.inter)- The following equations were used:
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Q is now defined as:
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where x, is the free receptor monomer concentration, A inter 1S the inter-site cooperativity
between receptors bound to adjacent palindromic response elements, A intra 1S the intra-
site cooperativity between two monomers bound to the same response element, and Kint.m

is the intrinsic affinity of a monomeric receptor for DNA.



