Online Appendix for Wang and Chen, "On testing an unspecified function through a linear mixed effects model with multiple variance components"

A1. Proof of Theorem 1

We prove the theorem under the model (5) with L = 2. We present a spectral decomposition of RSS_0 , RSS_1 , T_1 and T_2 through two equivalent models. For simplicity, we suppress γ in the notation of $\mathbf{V}_0(\gamma)$ and suppress γ and λ in the notation of $\mathbf{V}_1(\gamma, \lambda)$. We first consider the case where γ is known and then proceed to estimated γ . Multiplying both sides of (5) by $\mathbf{V}_0^{-1/2}$ to obtain an equivalent model under the null hypothesis as

$$\tilde{\boldsymbol{Y}} = \tilde{\boldsymbol{X}}_0 \boldsymbol{\beta} + \tilde{\boldsymbol{\varepsilon}}_1, \quad \tilde{\boldsymbol{\varepsilon}}_1 \sim N(\boldsymbol{0}, \sigma_{\boldsymbol{\varepsilon}}^2 \boldsymbol{I}_n),$$
(A.1)

where $\tilde{\boldsymbol{Y}} = \boldsymbol{V}_0^{-1/2} \boldsymbol{Y}$ and $\tilde{\boldsymbol{X}}_0 = \boldsymbol{V}_0^{-1/2} \boldsymbol{X}_0$. Under the alternative hypothesis, the equivalent model is

$$\tilde{\boldsymbol{Y}} = \tilde{\boldsymbol{X}}_1 \boldsymbol{\beta} + \tilde{\boldsymbol{\varepsilon}}_2, \quad \tilde{\boldsymbol{\varepsilon}}_2 \sim N(\boldsymbol{0}, \sigma_{\boldsymbol{\varepsilon}}^2 \tilde{\boldsymbol{V}}),$$
(A.2)

where $\tilde{\boldsymbol{X}}_1 = \boldsymbol{V}_0^{-1/2} \boldsymbol{X}_1$, $\tilde{\boldsymbol{V}} = \boldsymbol{V}_0^{-1/2} \boldsymbol{V}_1 \boldsymbol{V}_0^{-1/2} = \boldsymbol{I}_n + \lambda \tilde{\boldsymbol{Z}} \boldsymbol{\Sigma}_2 \tilde{\boldsymbol{Z}}^T$, and $\tilde{\boldsymbol{Z}} = \boldsymbol{V}_0^{-1/2} \boldsymbol{Z}_2$.

Denote $p = \operatorname{rank}(\hat{X}_1)$. Applying results from Patterson and Thompson (1971) and Kuo (1999) to the equivalent models (A.1) and (A.2), there exists an $n \times (n-p)$ matrix W such that

$$oldsymbol{W}^T oldsymbol{W} = oldsymbol{I}_{n-p}, \quad oldsymbol{W} oldsymbol{W}^T = oldsymbol{I}_n - ilde{oldsymbol{X}}_1 (ilde{oldsymbol{X}}_1^T ilde{oldsymbol{X}}_1)^{-1} ilde{oldsymbol{X}}_1^T,$$

 $oldsymbol{W}^T ilde{oldsymbol{V}} oldsymbol{W} = oldsymbol{W}^T (oldsymbol{I} + \lambda ilde{oldsymbol{Z}} \Sigma_2 ilde{oldsymbol{Z}}^T) oldsymbol{W} = ext{diag} \{1 + \xi_s(\gamma, \lambda)\},$

where

$$\begin{aligned} \xi_s(\gamma, \lambda) &= \operatorname{eigen}_s(\lambda \boldsymbol{W}^T \tilde{\boldsymbol{Z}} \boldsymbol{\Sigma}_2 \tilde{\boldsymbol{Z}}^T \boldsymbol{W}) \\ &= \lambda \operatorname{eigen}_s(\boldsymbol{W}^T \boldsymbol{V}_0^{-1/2} \boldsymbol{Z}_2 \boldsymbol{\Sigma}_2 \boldsymbol{Z}_2^T \boldsymbol{V}_0^{-1/2} \boldsymbol{W}) \\ &= \lambda \rho_s(\gamma), \end{aligned}$$

eigen_s(\boldsymbol{M}) denotes the sth eigenvalue of the matrix \boldsymbol{M} , and recall $\rho_s(\gamma) = \text{eigen}_s(\boldsymbol{W}^T \tilde{\boldsymbol{Z}} \boldsymbol{\Sigma}_2 \tilde{\boldsymbol{Z}}^T \boldsymbol{W})$. To obtain the matrix \boldsymbol{W} explicitly, let $\boldsymbol{U} \boldsymbol{D} \boldsymbol{U}^T$ be the singular value decomposition (SVD) of $\tilde{\boldsymbol{P}}_1 = \boldsymbol{I}_n - \tilde{\boldsymbol{X}}_1 (\tilde{\boldsymbol{X}}_1^T \tilde{\boldsymbol{X}}_1)^{-1} \tilde{\boldsymbol{X}}_1$, and let $\boldsymbol{A} = \boldsymbol{U} \boldsymbol{D}^{1/2}$. Then by the idempotent of $\tilde{\boldsymbol{P}}_1$, we have $\boldsymbol{A} \boldsymbol{A}^T = \tilde{\boldsymbol{P}}_1$ and $\boldsymbol{A}^T \boldsymbol{A} = \boldsymbol{I}_{n-p}$. Let $\boldsymbol{U}_1 \boldsymbol{D}_1 \boldsymbol{U}_1^T$ be the SVD of $\boldsymbol{A}^T \tilde{\boldsymbol{V}} \boldsymbol{A}$, then $\boldsymbol{W} = \boldsymbol{A} \boldsymbol{U}_1$. To verify this, note that $\boldsymbol{W} \boldsymbol{W}^T = \boldsymbol{A} \boldsymbol{U}_1 \boldsymbol{U}_1^T \boldsymbol{A}^T = \boldsymbol{A} \boldsymbol{A}^T = \tilde{\boldsymbol{P}}_1$, $\boldsymbol{W}^T \boldsymbol{W} = \boldsymbol{U}_1^T \boldsymbol{A}^T \boldsymbol{A} \boldsymbol{U}_1 = \boldsymbol{U}_1^T \boldsymbol{I}_{n-p} \boldsymbol{U}_1 = \boldsymbol{I}_{n-p}$, and

$$\boldsymbol{W}^{T}\tilde{\boldsymbol{V}}\boldsymbol{W} = \boldsymbol{U}_{1}^{T}\boldsymbol{A}^{T}\tilde{\boldsymbol{V}}\boldsymbol{A}\boldsymbol{U}_{1} = \boldsymbol{U}_{1}^{T}\boldsymbol{U}_{1}\boldsymbol{D}_{1}\boldsymbol{U}_{1}^{T}\boldsymbol{U}_{1} = \boldsymbol{D}_{1} = \operatorname{diag}\{1 + \xi_{s}(\gamma,\lambda)\}.$$
 (A.3)

We now show the spectral decomposition of RSS_0 and RSS_1 . Let $\boldsymbol{H}(\boldsymbol{X}, \boldsymbol{V}) \triangleq \boldsymbol{X}(\boldsymbol{X}^T \boldsymbol{V}^{-1} \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{V}^{-1}$. Then we have

$$RSS_{1}(\gamma, \lambda) = \frac{1}{\sigma_{\epsilon}^{2}} \tilde{\boldsymbol{Y}}^{T} \{ \boldsymbol{I} - \boldsymbol{H}(\tilde{\boldsymbol{X}}_{1}, \tilde{\boldsymbol{V}}) \} \tilde{\boldsymbol{V}}^{-1} \{ \boldsymbol{I} - \boldsymbol{H}(\tilde{\boldsymbol{X}}_{1}, \tilde{\boldsymbol{V}}) \} \tilde{\boldsymbol{Y}}$$
$$= \frac{1}{\sigma_{\epsilon}^{2}} \tilde{\boldsymbol{Y}}^{T} \boldsymbol{W} \operatorname{diag}[\{1 + \lambda \rho_{s}(\gamma)\}^{-1}] \boldsymbol{W}^{T} \tilde{\boldsymbol{Y}}.$$

The last step follows from Patterson and Thompson (1971), Kuo (1999) and Crainiceanu and Ruppert (2004). Note that

$$\boldsymbol{W}^T \tilde{\boldsymbol{Y}} \sim N(\boldsymbol{0}, \sigma_{\boldsymbol{\epsilon}}^2 \text{diag}\{1 + \lambda_0 \rho_s(\gamma_0)\}),$$

where γ_0 and λ_0 are the true values of γ and λ . Since under the null specified in (4) we have $\lambda_0 = \sigma_b^2 / \sigma_{\varepsilon}^2 = 0$, it follows that $\boldsymbol{W}^T \tilde{\boldsymbol{Y}} \sim N(\boldsymbol{0}, \sigma_{\varepsilon}^2 \boldsymbol{I}_{n-p})$ under the null. One desirable feature of this decomposition is that the distribution of $\boldsymbol{W}^T \tilde{\boldsymbol{Y}}$ under the null does not depend on the true values of the nuisance parameters θ_0 or γ_0 . Under the null, we have

$$RSS_1 = {}^d \sigma_{\varepsilon}^2 \sum_{s=1}^{n-p} \frac{1}{1+\lambda \rho_s(\gamma)} u_s^2, \tag{A.4}$$

where u_s are independent and identically distributed N(0, 1) random variables. Under the alternative, we have

$$RSS_1 = {}^d \sigma_{\varepsilon}^2 \sum_{s=1}^{n-p} \frac{1 + \lambda_0 \rho_s(\gamma_0)}{1 + \lambda \rho_s(\gamma)} u_s^2, \quad u_s \sim^{i.i.d.} N(0, 1).$$
(A.5)

Now we assess RSS_0 . Again using the equivalent models (A.1) and (A.2), we have

$$RSS_{0} = \frac{1}{\sigma_{\varepsilon}^{2}} \tilde{\boldsymbol{Y}}^{T} \{ \boldsymbol{I} - \boldsymbol{H}(\tilde{\boldsymbol{X}}_{0}, \boldsymbol{I}_{n-p}) \}^{T} \{ \boldsymbol{I} - \boldsymbol{H}(\tilde{\boldsymbol{X}}_{0}, \boldsymbol{I}_{n-p}) \} \tilde{\boldsymbol{Y}}$$

$$= \frac{1}{\sigma_{\varepsilon}^{2}} \tilde{\boldsymbol{Y}}^{T} \{ \boldsymbol{I} - \boldsymbol{H}(\tilde{\boldsymbol{X}}_{1}, \boldsymbol{I}_{n-p}) + \boldsymbol{H}(\tilde{\boldsymbol{X}}_{1}, \boldsymbol{I}_{n-p}) - \boldsymbol{H}(\tilde{\boldsymbol{X}}_{0}, \boldsymbol{I}_{n-p}) \} \tilde{\boldsymbol{Y}}$$

$$= \frac{1}{\sigma_{\varepsilon}^{2}} \tilde{\boldsymbol{Y}}^{T} \{ \boldsymbol{I} - \boldsymbol{H}(\tilde{\boldsymbol{X}}_{1}, \boldsymbol{I}_{n-p}) \} \tilde{\boldsymbol{Y}} + \frac{1}{\sigma_{\varepsilon}^{2}} \tilde{\boldsymbol{Y}}^{T} \{ \boldsymbol{H}(\tilde{\boldsymbol{X}}_{1}, \boldsymbol{I}_{n-p}) - \boldsymbol{H}(\tilde{\boldsymbol{X}}_{0}, \boldsymbol{I}_{n-p}) \} \tilde{\boldsymbol{Y}}$$

$$= \frac{1}{\sigma_{\varepsilon}^{2}} \tilde{\boldsymbol{Y}}^{T} \boldsymbol{W} \boldsymbol{W}^{T} \tilde{\boldsymbol{Y}}$$

$$+ \frac{1}{\sigma_{\varepsilon}^{2}} \tilde{\boldsymbol{Y}}^{T} [\{ \boldsymbol{I} - \boldsymbol{H}(\tilde{\boldsymbol{X}}_{0}, \boldsymbol{I}_{n-p}) \} - \{ \boldsymbol{I} - \boldsymbol{H}(\tilde{\boldsymbol{X}}_{1}, \boldsymbol{I}_{n-p}) \}] \tilde{\boldsymbol{Y}}.$$
(A.6)

It is easy to see that the second term (A.7) is the difference of residual sum of squares of
least squares fit from two nested models, one with
$$\tilde{X}_0$$
 as fixed effects and the other with
 \tilde{X}_1 as fixed effects. Therefore it is standard to show that

$$\tilde{\boldsymbol{Y}}^{T}[\{\boldsymbol{I}-\boldsymbol{H}(\tilde{\boldsymbol{X}}_{0},\boldsymbol{I}_{n})\}-\{\boldsymbol{I}-\boldsymbol{H}(\tilde{\boldsymbol{X}}_{1},\boldsymbol{I}_{n})\}]\tilde{\boldsymbol{Y}}=^{d}\sigma_{\varepsilon}^{2}\sum_{s=1}^{p-q}(\theta_{s}+v_{s})^{2},$$

where $v_s \sim N(0,1)$, θ_s is the *s*th component of $\{\boldsymbol{H}(\tilde{\boldsymbol{X}}_1,\boldsymbol{I}_n) - \boldsymbol{H}(\tilde{\boldsymbol{X}}_0,\boldsymbol{I}_n)\}\tilde{\boldsymbol{X}}_1\boldsymbol{\beta}$ (see for example, page 50 of Christensen 1996). In other words, (A.7) follows a χ^2 distribution with degrees of freedom p-q and noncentrality parameter $\sum \theta_s^2$. Under the H_0 , the expectation of $\tilde{\boldsymbol{Y}}$ is $\tilde{\boldsymbol{X}}_0\boldsymbol{\beta}_0$, and by $\{\boldsymbol{H}(\tilde{\boldsymbol{X}}_1,\boldsymbol{I}_{n-p}) - \boldsymbol{H}(\tilde{\boldsymbol{X}}_0,\boldsymbol{I}_{n-p})\}\tilde{\boldsymbol{X}}_0 = \boldsymbol{0}$, we have $\boldsymbol{\beta}_0^T\tilde{\boldsymbol{X}}_0^T\{\boldsymbol{H}(\tilde{\boldsymbol{X}}_1,\boldsymbol{I}_{n-p}) - \boldsymbol{H}(\tilde{\boldsymbol{X}}_0,\boldsymbol{I}_{n-p})\}\tilde{\boldsymbol{X}}_0 = \boldsymbol{0}$, we have $\boldsymbol{\beta}_0^T\tilde{\boldsymbol{X}}_0^T\{\boldsymbol{H}(\tilde{\boldsymbol{X}}_1,\boldsymbol{I}_{n-p}) - \boldsymbol{H}(\tilde{\boldsymbol{X}}_0,\boldsymbol{I}_{n-p})\}\tilde{\boldsymbol{X}}_0\boldsymbol{\beta}_0 = 0$. Therefore (A.7) divided by σ_{ε}^2 follows a χ^2 with degrees of freedom p-q and noncentrality parameter zero. Further observe that $\boldsymbol{W}^T\tilde{\boldsymbol{X}}_1 = \boldsymbol{0}$ and $\boldsymbol{W}^T\tilde{\boldsymbol{X}}_0 = \boldsymbol{0}$, we obtain that (A.7) is uncorrelated to (A.6). It follows that under the alternative,

$$RSS_0 =^d \sigma_{\varepsilon}^2 \left\{ \sum_{s=1}^{n-p} u_s^2 + \sum_{s=1}^{p-q} (\theta_s + v_s)^2 \right\},\,$$

where $v_s \sim N(0, 1)$ are independent of u_s . Under the null, we have

$$RSS_0 = {}^d \sigma_{\varepsilon}^2 \left(\sum_{s=1}^{n-p} u_s^2 + \sum_{s=1}^{p-q} v_s^2 \right), \quad u_s \sim^{i.i.d.} N(0,1), \quad v_s \sim^{i.i.d.} N(0,1).$$
(A.8)

Putting together the spectral decompositions of RSS_0 and RSS_1 and by (6), we arrive at the decomposition for T_1 in (8) of Theorem 1. When γ is unknown but consistently estimated, $\hat{\boldsymbol{V}}_0^{-1/2} \boldsymbol{V}_0 \hat{\boldsymbol{V}}_0^{-1/2} = \boldsymbol{I}_n + o_p(1)$. Therefore the variance of $\tilde{\boldsymbol{Y}}$ under the equivalent model (A.1) is approximately $\sigma_{\varepsilon}^2 \boldsymbol{I}$ and under the equivalent model (A.2) is approximately $\tilde{\boldsymbol{V}}$. It follows that replacing γ_0 by $\hat{\gamma}$ in the expression (6), we obtain a spectral representation of T_2 in Theorem 1. Finally, we give the decomposition of the restricted likelihood, $f_n(\lambda, \gamma)$, in this Online Appendix A3 which completes the proof of Theorem 1.

A2. Simultaneous diagonalizing

Here we verify (10). Let \boldsymbol{W}_* denote the matrix that simultaneously diagonalizes $\boldsymbol{Z}_1 \boldsymbol{\Sigma}_1 \boldsymbol{Z}_1^T$ and $\boldsymbol{Z}_2 \boldsymbol{\Sigma}_2 \boldsymbol{Z}_2^T$. That is, $\boldsymbol{W}_*^T \boldsymbol{Z}_2 \boldsymbol{\Sigma}_2 \boldsymbol{Z}_2^T \boldsymbol{W}_* = \text{diag}(\mu_s)$, and $\gamma \boldsymbol{W}_*^T \boldsymbol{Z}_1 \boldsymbol{\Sigma}_1 \boldsymbol{Z}_1^T \boldsymbol{W}_* = \gamma \text{diag}(\omega_s)$. Recall that $\rho_s(\gamma) = \text{eigen}_s(\boldsymbol{W}^T \tilde{\boldsymbol{Z}} \boldsymbol{\Sigma}_2 \tilde{\boldsymbol{Z}}^T \boldsymbol{W})$, it suffices to show

$$\begin{split} \operatorname{eigen}_{s}(\boldsymbol{W}^{T}\tilde{\boldsymbol{Z}}\boldsymbol{\Sigma}_{2}\tilde{\boldsymbol{Z}}^{T}\boldsymbol{W}) &= \operatorname{eigen}_{s}(\boldsymbol{W}^{T}\boldsymbol{V}_{0}^{-1/2}\boldsymbol{Z}_{2}\boldsymbol{\Sigma}_{2}\boldsymbol{\Sigma}_{2}\boldsymbol{\Sigma}_{2}\boldsymbol{Z}_{2}^{T}\boldsymbol{V}_{0}^{-1/2}\boldsymbol{W}) \\ &= \operatorname{eigen}_{s}(\boldsymbol{Z}_{2}\boldsymbol{\Sigma}_{2}\boldsymbol{\Sigma}_{2}\boldsymbol{Z}_{2}^{T}\boldsymbol{V}_{0}^{-1/2}\boldsymbol{W}\boldsymbol{W}^{T}\boldsymbol{V}_{0}^{-1/2}) \\ &= \operatorname{eigen}_{s}[\boldsymbol{Z}_{2}\boldsymbol{\Sigma}_{2}\boldsymbol{Z}_{2}\boldsymbol{Z}_{2}^{T}\boldsymbol{V}_{0}^{-1/2}\{\boldsymbol{I}-\boldsymbol{V}_{0}^{-1/2}\boldsymbol{X}_{1}(\boldsymbol{X}_{1}^{T}\boldsymbol{V}_{0}^{-1}\boldsymbol{X}_{1})\boldsymbol{X}_{1}\boldsymbol{V}_{0}^{-1/2}\}\boldsymbol{V}_{0}^{-1/2}\} \\ &= \operatorname{eigen}_{s}[\boldsymbol{Z}_{2}\boldsymbol{\Sigma}_{2}\boldsymbol{Z}_{2}^{T}\{\boldsymbol{V}_{0}^{-1}-\boldsymbol{V}_{0}^{-1}\boldsymbol{X}_{1}(\boldsymbol{X}_{1}^{T}\boldsymbol{V}_{0}^{-1}\boldsymbol{X}_{1})^{-1}\boldsymbol{X}_{1}^{T}\boldsymbol{V}_{0}^{-1}\}] \\ &= \operatorname{eigen}_{s}[\boldsymbol{Z}_{2}\boldsymbol{\Sigma}_{2}\boldsymbol{Z}_{2}^{T}\{\boldsymbol{I}-\boldsymbol{H}(\boldsymbol{X}_{1},\boldsymbol{V}_{0})\}^{T}\boldsymbol{V}_{0}^{-1}\{\boldsymbol{I}-\boldsymbol{H}(\boldsymbol{X}_{1},\boldsymbol{V}_{0})\}] \\ &= \operatorname{eigen}_{s}\left[\boldsymbol{Z}_{2}\boldsymbol{\Sigma}_{2}\boldsymbol{Z}_{2}^{T}\boldsymbol{W}_{*}\{\operatorname{diag}(1+\gamma\boldsymbol{\omega}_{s})\}^{-1}\boldsymbol{W}_{*}^{T}\right] \\ &= \operatorname{eigen}_{s}\left[\boldsymbol{W}_{*}^{T}\boldsymbol{Z}_{2}\boldsymbol{\Sigma}_{2}\boldsymbol{Z}_{2}^{T}\boldsymbol{W}_{*}\{\operatorname{diag}(1+\gamma\boldsymbol{\omega}_{s})\}^{-1}\right] \\ &= \operatorname{eigen}_{s}\left[\operatorname{diag}(\boldsymbol{\mu}_{s})\{\operatorname{diag}(1+\gamma\boldsymbol{\omega}_{s})\}^{-1}\right] = \operatorname{diag}\left(\frac{\boldsymbol{\mu}_{s}}{1+\gamma\boldsymbol{\omega}_{s}}\right). \end{split}$$

Here the fourth line is by straightforward matrix algebra and the fifth line is by various properties of \boldsymbol{W}_* including that it diagonalizes $\boldsymbol{V}_0 = \boldsymbol{I} + \gamma \boldsymbol{Z}_1 \boldsymbol{\Sigma}_1 \boldsymbol{Z}_1^T$ and $\boldsymbol{W}_* \boldsymbol{W}_*^T = \boldsymbol{I} - \boldsymbol{H}(\boldsymbol{X}_1, \boldsymbol{I})$ (Kuo 1999).

A3. Spectral decompositions of (restricted) log-likelihood

Under the alternative, the profile log-likelihood is obtained by plugging $\hat{\beta}_1(\gamma, \lambda)$ into the likelihood, which leads to

$$L(\gamma, \lambda) = -n\log\{RSS_1(\gamma, \lambda)\} - \log|\mathbf{V}_1|.$$

Using (A.4) and a result from Kuo (1999), we obtain that the log-likelihood assuming H_a has the spectral decomposition

$$L(\gamma, \lambda) = -n\log\left\{\sum_{s=1}^{K} \frac{u_s^2}{1 + \lambda\rho_s(\gamma)} + \sum_{s=K+1}^{n-p} u_s^2\right\} - \sum_{s=1}^{K} \log\{1 + \lambda\varphi_s(\gamma)\} - \sum_{s=1}^{K} \log(1 + \gamma\omega_s) + \sum_{s=1}^{K} \log(1 + \omega_s) + \sum_{s=1}$$

Here we used the fact that only K eigenvalues $\rho_s(\gamma)$ are non-zero. Using (A.8) it is easy to obtain that the likelihood under the H_0 has the representation

$$L(\gamma, 0) = -n \log \left(\sum_{s=1}^{n-p} u_s^2 + \sum_{s=1}^{p-q} v_s^2 \right) - \sum_{s=1}^{K} \log(1 + \gamma \omega_s).$$

By the above spectral decompositions of $L(\gamma, \lambda)$ and $L(\gamma, 0)$ and some algebra, it follows that LRT_1 has the exact distribution shown in (11). Similar to T_2 , when γ is unknown but can be consistently estimated, the null distribution of LRT_2 can be obtained by

$$n\log\left(1+\frac{\sum_{s=1}^{p-q}v_s^2}{\sum_{s=1}^{n-p}u_s^2}\right)+\sup_{\lambda,\gamma}g_n(\gamma,\lambda).$$

Using a result from Kuo (1999), the restricted profile log-likelihood assuming H_a is

$$RL(\gamma, \lambda) = -(n-p)\log\left\{\sum_{s=1}^{K} \frac{u_s^2}{1+\lambda\rho_s(\gamma)} + \sum_{s=K+1}^{n-p} u_s^2\right\} - \sum_{s=1}^{K} \log\{1+\lambda\rho_s(\gamma)\} - \sum_{s=1}^{K} \log(1+\gamma\omega_s) - \log(|\boldsymbol{X}^T\boldsymbol{X}|),$$

which is $f_n(\gamma, \lambda)$ in Theorem 1 aside from a constant. Assuming H_0 , the corresponding restricted log-likelihood is

$$RL(\gamma, 0) = -(n-p)\log\left(\sum_{s=1}^{n-p} u_s^2\right) - \sum_{s=1}^{K} \log\left\{1 + \lambda\rho_s(\gamma)\right\} - \sum_{s=1}^{K} \log(1 + \gamma\omega_s) - \log(|\mathbf{X}^T \mathbf{X}|).$$

After some algebra, we obtain the null distributions of $RLRT_1$ and $RLRT_2$ presented in section 3.3.

A4. Additional information on the simulations

This section includes an expansion of Tables 1 and 2 in the main text. Here we report all empirical rejection rates and their confidence intervals (Tables A1 and A2 correspond to Table 1 in the main text, and Tables A3 and A4 correspond to Table 2 in the main text).

References

- Christensen, R. (1996). Plane answers to complex questions: the theory of linear models. New York: Springer.
- Kuo, B.S. (1999). Asymptotics of ML estimator for regression models with a stochastic trend component. *Econometrics Theory*, 15, 2449.
- Patterson, H.D., and Thompson, R. (1971) Recovery of inter-block information when block sizes are unequal. *Biometrika*, 58, 545-554.

Table A1: Type I error rates and confidence intervals of testing linearity (an unspecified function) or a random effect in five examples, based on 5,000 simulations^{*}.

(a) Partially linear model		n = 10	$n_i = 5$		
σ_b	0	0.01	0.1	1	10
Generalized F	$0.052 \ [0.046, \ 0.059]$	$0.052 \ [0.046, \ 0.059]$	$0.054 \ [0.048, \ 0.060]$	$0.053 \ [0.047, \ 0.060]$	$0.054 \ [0.048, \ 0.061]$
pseudo-RLRT	$0.050 \ [0.044, \ 0.056]$	$0.049 \ [0.043, \ 0.056]$	$0.052 \ [0.046, \ 0.059]$	$0.052 \ [0.046, \ 0.059]$	$0.054 \ [0.048, \ 0.061]$
$5\chi_0^2 + .5\chi_1^2$	$0.040 \ [0.034, \ 0.045]$	$0.043 \ [0.038, \ 0.049]$	$0.043 \ [0.037, \ 0.049]$	$0.042 \ [0.037, \ 0.048]$	$0.046 \ [0.040, \ 0.052]$
(b) Partially linear model		n = 10	$n_i = 5$		
σ_{lpha}	0	0.01	0.1	1	10
Generalized F	$0.052 \ [0.046, \ 0.058]$	$0.052 \ [0.046, \ 0.058]$	$0.048 \ [0.043, \ 0.055]$	$0.050 \ [0.044, \ 0.056]$	$0.055\ [0.048, 0.061]$
pseudo-LRT	$0.050 \ [0.045, \ 0.057]$	$0.046 \ [0.041, \ 0.052]$	$0.049 \ [0.043, \ 0.055]$	$0.055 \ [0.048, \ 0.061]$	$0.054 \ [0.048, \ 0.061]$
$.5\chi_2^2 + .5\chi_3^2$	0.038 $[0.033, 0.044]$	$0.035 \ [0.030, \ 0.040]$	$0.036 \ [0.031, \ 0.041]$	$0.043 \ [0.037, \ 0.049]$	$0.040 \ [0.035, \ 0.046]$
(c) Partially linear model		n = 40	$n_i = 5$		
σ_{lpha_1}	0	0.01	0.1		10
Generalized F	0.050 [0.044, 0.057]	$0.047 \ [0.041, \ 0.053]$	$0.047 \ [0.041, \ 0.053]$	$0.052 \ [0.046, \ 0.059]$	$0.050 \ [0.044, \ 0.056]$
pseudo-LRT	$0.052 \ [0.046, \ 0.059]$	0.047 [0.041, 0.053]	$0.054 \ [0.048, \ 0.060]$	$0.053 \ [0.047, \ 0.060]$	$0.058 \left[0.051, 0.064 \right]$
$.5\chi_2^2 + .5\chi_3^2$	0.032 $[0.027, 0.037]$	$0.030 \ [0.025, \ 0.034]$	$0.031 \ [0.026, \ 0.036]$	$0.034 \ [0.029, \ 0.039]$	$0.035 \ [0.030, \ 0.040]$
(d)Varying coefficient model			n = 50		
σ_{b_1}	0	0.01	0.1		10
Generalized F	$0.052 \ [0.046, \ 0.058]$	$0.048 \ [0.042, \ 0.054]$	$0.055 \ [0.049, \ 0.062]$	$0.053 \ [0.047, \ 0.060]$	$0.049 \ [0.044, \ 0.056]$
pseudo-LRT	$0.051 \ [0.045, \ 0.057]$	$0.050 \ [0.044, \ 0.056]$	$0.054 \ [0.048, \ 0.061]$	$0.054 \ [0.048, \ 0.061]$	$0.053 \ [0.047, 0.059]$
$.5\chi_2^2 + .5\chi_3^2$	$0.041 \ [0.035, \ 0.046]$	$0.040 \ [0.034, \ 0.045]$	$0.043 \ [0.037, \ 0.049]$	$0.042 \ [0.037, \ 0.048]$	$0.041 \ [0.036, 0.047]$
(e) Additive model			n = 50		
σ_{b_1}	0	0.01	0.1		10
Generalized F	$0.049 \ [0.043, \ 0.055]$	$0.052 \ [0.046, \ 0.058]$	$0.047 \ [0.041, \ 0.053]$	$0.055 \ [0.049, \ 0.062]$	$0.051 \ [0.045, \ 0.058]$
pseudo-RLRT	$0.046 \ [0.040, \ 0.052]$	$0.046 \ [0.040, \ 0.052]$	$0.045 \ [0.039, \ 0.051]$	$0.050 \ [0.044, \ 0.056]$	$0.054 \ [0.048, 0.060]$
$.5\chi_0^2 + .5\chi_1^2$	0.023 $[0.019, 0.028]$	$0.026 \ [0.021, \ 0.030]$	$0.026 \ [0.022, \ 0.031]$	$0.029 \ [0.024, \ 0.034]$	$0.032 \ [0.027, \ 0.037]$

*: Entries are empirical rejects rates and their exact 95% confidence intervals.

(a): Testing for the random intercept with a nuisance unspecified function as in example 1.

(b): Testing for an unspecified function with a nuisance random intercept as in example 1.

(c): Testing for an unspecified function with nuisance random intercept and random slope as in example 2.

(d): Testing for a varying coefficient with a nuisance smooth term as in example 3.

(e): Testing for linearity of a smooth additive function with a nuisance smooth term as in example 4; $corr(t_{i1}, t_{i2})=0.7$.

Table A2: Type I errors and confidence intervals of testing linearity (an unspecified function) or a random effect in five examples, based on 5,000 simulations^{*}.

near model		0.05	0.05	0.04	ar model		0.04	0.04	0.02	r model		0.05	0.05	0.05	icient model		0.05	0.05	0.05	lel		0.04	0.05	0.01
	0	$54 \ [0.048, \ 0.061]$	$51 \ [0.045, \ 0.058]$	$48 \ [0.042, \ 0.055]$		0	$46 \ [0.040, \ 0.052]$	$40 \ [0.035, \ 0.046]$	23 $[0.019, 0.028]$		0	$52 \ [0.046, \ 0.059]$	50[0.044, 0.056]	$30 \ [0.025, \ 0.035]$		0	$52 \ [0.046, \ 0.058]$	$51 \ [0.045, \ 0.057]$	$31 \ [0.026, \ 0.036]$		0	$46 \ [0.040, \ 0.052]$	$39 \ [0.034, \ 0.045]$	18 $[0.015, 0.022]$
n = 100	0.01	$0.052 \ [0.046, \ 0.058]$	$0.050 \ [0.044, \ 0.057]$	$0.048 \ [0.042, \ 0.054]$	n = 100	0.01	$0.050 \ [0.045, \ 0.057]$	$0.045 \ [0.039, \ 0.051]$	0.025 $[0.021, 0.030]$	n = 100	0.01	$0.056 \ [0.050, \ 0.063]$	$0.050 \ [0.044, \ 0.056]$	0.033 $[0.028, 0.038]$		0.01	$0.046 \ [0.041, \ 0.052]$	$0.052 \ [0.046, \ 0.059]$	$0.032 \ [0.028, \ 0.038]$		0.01	$0.050 \ [0.044, \ 0.057]$	$0.040 \ [0.035, \ 0.046]$	0.019 [0.016, 0.024]
$n_i = 5$	0.1	$0.047 \ [0.041, \ 0.053]$	$0.048 \ [0.042, \ 0.054]$	$0.045 \left[0.040, 0.052 \right]$	$n_i = 5$	0.1	$0.047 \ [0.041, \ 0.053]$	$0.041 \ [0.036, \ 0.047]$	0.023 $[0.019, 0.028]$	$n_i = 5$	0.1	$0.050 \ [0.044, \ 0.056]$	$0.046 \left[0.040, 0.052 \right]$	0.029 $[0.024, 0.034]$	n = 500	0.1	$0.048 \ [0.043, \ 0.055]$	$0.051 \ [0.045, \ 0.057]$	$0.031 \ [0.027, \ 0.037]$	n = 500	0.1	$0.051 \ [0.045, \ 0.057]$	$0.042 \ [0.036, \ 0.048]$	0.017 $[0.014, 0.021]$
	1	$0.053 \ [0.046, \ 0.059]$	$0.052 \ [0.044, \ 0.056]$	$0.050 \ [0.044, \ 0.056]$		1	$0.054 \ [0.048, \ 0.060]$	$0.048 \ [0.043, \ 0.055]$	0.033 $[0.028, 0.038]$			$0.050 \ [0.045, \ 0.057]$	$0.048 \left[0.042, 0.055 \right]$	$0.031 \ [0.026, \ 0.036]$		-1	$0.048 \ [0.042, \ 0.054]$	$0.054 \ [0.048, \ 0.060]$	$0.032 \ [0.027, \ 0.037]$			$0.052 \left[\ 0.046, \ 0.058 \right]$	0.050 [0.044, 0.056]	$0.027 \ [\ 0.023, \ 0.032]$
	10	$0.049 \ [0.044, \ 0.056]$	$0.050 \ [0.044, \ 0.056]$	$0.047 \ [0.041, \ 0.053]$		10	$0.048 \ [0.042, \ 0.055]$	$0.052 \ [0.046, \ 0.058]$	0.033 $[0.028, 0.038]$		10	$0.056 \ [0.049, \ 0.062]$	$0.055 \left[0.049, 0.062 \right]$	0.037 $[0.032, 0.042]$		10	$0.052 \ [0.046, \ 0.059]$	$0.049 \ [0.043, \ 0.055]$	$0.030 \ [0.025, \ 0.035]$		10	$0.051 \ [0.045, \ 0.057]$	$0.051 \ [0.045, \ 0.057]$	0.027 $[0.023, 0.032]$

 * : Entries are empirical rejects rates and their exact 95% confidence intervals.

(a): Testing for the random intercept with a nuisance unspecified function as in example 1.

(b): Testing for an unspecified function with a nuisance random intercept as in example 1.

(c): Testing for an unspecified function with nuisance random intercept and random slope as in example 2. (d): Testing for a varying coefficient with a nuisance smooth term as in example 3.

(e): Testing for linearity of a smooth additive function with a nuisance smooth term as in example 4; $corr(t_{i1}, t_{i2})=0.7$.

Table A3: Power of and confidence intervals testing linearity (an unspecified function) or a random effect in six examples, based on 1,000 simulations^{*}.

2	0.9	$, 0.857] 0.905 \ [0.885, 0.922]$	[0.852] 0.904 $[0.884, 0.922]$, 0.840] 0.891 [0.870, 0.910]	5	1.2	(0.890] 0.971 $[0.959, 0.980]$	7, 0.818 0.945 $[0.929, 0.958]$	(, 0.772] 0.929 $[0.911, 0.944]$	5	1.5	(, 0.853] 0.959 $[0.945, 0.970]$	$, 0.849] 0.940 \ [0.923, 0.954]$	0, 0.820 0.935 $[0.918, 0.949]$		1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0, 0.749 0.855 $[0.832, 0.876]$	(0.706] 0.830 $[0.805, 0.853]$		1	(, 0.861] 0.931 $[0.913, 0.946]$, 0.857 0.938 $[0.921, 0.952]$	$\left(\begin{array}{c} 0.837 \\ 0.930 \end{array} \right) \left[0.930 \left[0.912 \\ 0.945 \right] \end{array} \left(\begin{array}{c} 0.945 \\ 0.945 \end{array} \right) \left(\begin{array}{c} 0.945 \\ 0.945 \end{array} \right) \left(\begin{array}{c} 0.945 \\ 0.945 \end{array} \right) \left(\begin{array}{c} 0.94$		12	[1, 0.836] 0.932 $[0.915, 0.947]$		0.832 0.925 0.907 0.941
$n_i = 1$	0.8	9] 0.835 [0.811]	9] 0.829 [0.804]	$\overline{3}$ 0.816 $[0.791$	$n_i = 1$		7] 0.870 [0.848	0 0.793 0.767	$\vec{3}$ 0.745 $[0.717$	$n_i = 1$	0.7	2] 0.830 [0.805]	5 0.826 0.801	4] 0.796[0.770		0.8	1 0.789 $[0.762$	9 0.721 0.692	5] 0.677 [0.647		0.8	2] 0.839 [0.815]	$\vec{7}$ 0.835 0.811	0] 0.813 0.787		×	3] 0.812 [0.786		
n = 10	0.7	0.763 [0.735, 0.78]	0.763 [0.735, 0.789	0.739 $[0.711, 0.760$	n = 10	0.7	0.596 [0.565, 0.62]	0.559 $[0.528, 0.590$	0.505 $[0.474, 0.530$	n = 20	0.5	0.725 [0.696, 0.75]	0.748 $[0.720, 0.77]$	0.706 $[0.677, 0.73]$	n = 50	0.6	0.490 [0.459, 0.52]	0.438 [0.407, 0.46	0.394 $[0.364, 0.42]$	n = 50	0.7	0.652 [0.622, 0.68]	0.688 0.658, 0.71	0.650[0.620, 0.680]	n = 50	ю	0.664 [0.634, 0.69;		
	0.5	$0.469 \ [0.438, \ 0.500]$	$0.461 \ [0.430, \ 0.492]$	0.423 $[0.392, 0.454]$		0.5	$0.343 \ [0.314, \ 0.373]$	0.317 $[0.288, 0.347]$	$0.264 \ [0.237, \ 0.292]$		0.3	$0.576 \ [0.545, \ 0.607]$	$0.599 \ [0.568, \ 0.630]$	$0.554 \left[0.523, 0.585 \right]$		0.4	$0.244 \ [0.218, \ 0.272]$	$0.244 \ [0.218, \ 0.272]$	0.221 $[0.196, 0.248]$		0.5	$0.404 \ [0.373, \ 0.435]$	0.429 $[0.398, 0.460]$	$0.389 \left[0.359, 0.420 \right]$		c.	$0.459 \ [0.428, \ 0.490]$		U.454 10.423. 0.4851
	0.3	$0.177 \ [0.154, \ 0.202]$	$0.180 \ [0.157, \ 0.205]$	$0.162 \ [0.140, \ 0.186]$		0.3	$0.143 \ [0.122, \ 0.166]$	$0.143 \ 0.122, \ 0.166 \ 0.122$	0.106[0.088, 0.127]		0.1	$0.408 \ [0.377, \ 0.439]$	$0.465 \ [0.434, \ 0.496]$	$0.400 \ [0.369, \ 0.431]$		0.2	$0.088 \ [0.071, \ 0.107]$	$0.089 \ [0.072, 0.108]$	$0.071 \ [0.056, \ 0.089]$		0.2	$0.103 \ [0.085, \ 0.124]$	0.121 [0.101, 0.143]	0.101 [0.083, 0.121]		2	$0.270 \ [0.243, \ 0.299]$		1067 11 677 11 997 11
(a) Partially linear model	σ_{α}	Generalized F	pseudo-RLRT	$.5\chi_0^2 + .5\chi_1^2$	(b)Partially linear model	<i>b</i>	Generalized F	pseudo-LRT	$.5\chi_2^2 + .5\chi_3^2$	(c) Partially linear model	σ_b	Generalized F	pseudo-LRT	$.5\chi_2^2 + .5\chi_3^2$	(d) Varying coefficient model	d	Generalized F	pseudo-LRT	$.5\chi_2^2 + .5\chi_3^2$	(e) Varying coefficient model	d b	Generalized F	pseudo-LRT	$5\chi_2^2 + 5\chi_3^2$	(f) Additive model	σ_{b_2}	Generalized F	שמום בניייביי	

9

*: Entries are empirical rejects rates and their exact 95% confidence intervals.

(a): Testing for the random intercept with a nuisance unspecified function as in example 1.

(b): Testing for an unspecified function with a nuisance random intercept as in example 1.

(c): Testing for an unspecified function with nuisance random intercept and random slope as in example 2.

(d): Testing for a varying coefficient with a nuisance smooth term as in example 3, sine function.

(e): Testing for a varying coefficient with a nuisance smooth term as in example 3, polynomial function. (f): Testing for linearity of a smooth additive function with a nuisance smooth term as in example 4; $corr(t_{i1}, t_{i2})=0.7$.

Table A4: Power and confidence intervals of testing linearity (an unspecified function) or a random effect in six examples, based on 1,000 simulations^{*}.

(a) Partially linear model			n = 100	$n_i = 5$	
σ_{lpha}	0.15	0.2	0.25	0.3	0.35
Generalized F	$0.165 \ [0.143, \ 0.189]$	$0.308 \ [0.279, \ 0.338]$	$0.551 \ [0.520, \ 0.582]$	$0.778 \ [0.751, \ 0.803]$	$0.916 \ [0.897, \ 0.932]$
pseudo-RLRT	$0.168 \ [0.145, \ 0.193]$	$0.321 \ [0.292, 0.351]$	$0.554 \ [0.523, \ 0.585]$	$0.789 \ [0.762, \ 0.814]$	$0.913 \ [0.894, \ 0.930]$
$.5\chi_0^2 + .5\chi_1^2$	$0.159 \ 0.137, 0.183 \ 0.183 \ 0.137, 0.183 \ 0.183 $	$0.306\ [0.278,\ 0.336]$	$0.541 \ [0.510, \ 0.572]$	0.779 $[0.752, 0.804]$	$0.910 \ [0.891, \ 0.930]$
(b) Partially linear model			n = 100	$n_i = 5$	
d	0.1	0.15	0.2	0.25	0.3
Generalized F	$0.171 \ [0.148, \ 0.196]$	$0.333 \ [0.304, \ 0.363]$	$0.608 \ [0.577, \ 0.638]$	$0.805 \ [0.779, \ 0.829]$	$0.927 \ [0.909, \ 0.942]$
pseudo-LRT	$0.162 \ [0.140, \ 0.186]$	$0.309 \left[0.280, 0.339 \right]$	0.533 $[0.502, 0.564]$	$0.704 \ [0.675, \ 0.732]$	$0.887 \ [0.866, \ 0.906]$
$.5\chi_2^2 + .5\chi_3^2$	$0.114 \left[0.095, 0.135 \right]$	0.243 $[0.217, 0.271]$	0.462 $[0.431, 0.493]$	$0.640 \ [0.609, \ 0.670]$	$0.839 \ [0.815, \ 0.861]$
(c)Partially linear model			n = 100	$n_i = 5$	
σ_b	0.1	0.2	0.3	0.5	1
Generalized F	$0.321 \ [0.292, \ 0.351]$	$0.588 \ [0.557, 0.619]$	$0.737 \ [0.709, \ 0.764]$	$0.868 \ [0.845, \ 0.888]$	0.973 [0.961, 0.982]
pseudo-LRT	$0.365 \ [0.335, \ 0.396]$	$0.606 \ [0.575, 0.636]$	$0.736 \ [0.708, \ 0.763]$	$0.855 \ [0.832, \ 0.876]$	$0.949 \ [0.933, \ 0.962]$
$.5\chi_2^2 + .5\chi_3^2$	$0.305 \left[0.277, 0.335 \right]$	0.568[0.537, 0.599]	$0.705 \left[0.676, 0.733 \right]$	0.838 $[0.814, 0.860]$	$0.941 \ [0.925, \ 0.955]$
(d) Varying coefficient model			n = 500		
q	0.1	0.15	0.2	0.25	0.3
Generalized F	$0.185 \ [0.161, \ 0.210]$	$0.394 \ [0.364, \ 0.425]$	$0.651 \ [0.621, \ 0.681]$	$0.866 \ [0.843, \ 0.887]$	$0.943 \ [0.927, \ 0.957]$
pseudo-LRT	$0.174 \ [0.151, \ 0.199]$	$0.367 \ [0.337, \ 0.398]$	$0.549 \ [0.518, \ 0.580]$	$0.791 \ [0.764, \ 0.816]$	$0.887 \ [0.866, \ 0.906]$
$.5\chi_2^2 + .5\chi_3^2$	0.127 $[0.107, 0.149]$	$0.297 \left[0.269, 0.326 ight]$	$0.470 \ [0.439, \ 0.501]$	$0.722 \ [0.693, \ 0.750]$	$0.848 \left[0.824, 0.870\right]$
(e) Varying coefficient model			n = 500		
d	0.1	0.15	0.2	0.25	0.3
Generalized F	$0.193 \ [0.169, \ 0.219]$	$0.446 \ [0.415, \ 0.477]$	0.717 $[0.688, 0.745]$	$0.907 \ [0.887, \ 0.924]$	$0.985 \ [0.975, \ 0.992]$
pseudo-LRT	$0.220 \ [0.195, \ 0.247]$	$0.459 \ [0.428, \ 0.490]$	$0.743 \ [0.715, \ 0.770]$	$0.907 \ [0.887, \ 0.924]$	$0.980 \ [0.969, \ 0.988]$
$.5\chi_2^2 + .5\chi_3^2$	$0.158 \ [0.136, \ 0.182]$	$0.396 \ [0.366, \ 0.427]$	$0.677 \ [0.647, \ 0.706]$	$0.874 \ [0.852, \ 0.894]$	$0.969 \ [0.956, \ 0.979]$
(f) Additive model			n = 500		
σ_{b_2}	0.1	0.3	0.5	1	2
Generalized F	$0.086 \ [0.069, \ 0.105]$	$0.331 \ [0.302, 0.361]$	$0.546 \ [0.515, \ 0.577]$	$0.831 \ [0.806, \ 0.854]$	$0.967 \ [0.954, \ 0.977]$
pseudo-RLRT	$0.083 \ [0.067, \ 0.102]$	$0.343 \ [0.314, \ 0.373]$	$0.540 \ [0.509, \ 0.571]$	$0.819 \ [0.794, \ 0.842]$	$0.958 \ [0.944, \ 0.970]$
$.5\chi_0^2 + .5\chi_1^2$	$0.048 \ [0.036, \ 0.063]$	$0.279 \ [0.251, \ 0.308]$	$0.475 \ [0.444, \ 0.506]$	$0.794 \ [0.768, \ 0.819]$	$0.952 \ [0.937, \ 0.964]$

10

*: Entries are empirical rejects rates and their exact 95% confidence intervals.

(a): Testing for the random intercept with a nuisance unspecified function as in example 1.

(b): Testing for an unspecified function with a nuisance random intercept as in example 1.

(c): Testing for an unspecified function with nuisance random intercept and random slope as in example 2.

(d): Testing for a varying coefficient with a nuisance smooth term as in example 3, sine function.

(e): Testing for a varying coefficient with a nuisance smooth term as in example 3, polynomial function.

(f): Testing for linearity of a smooth additive function with a nuisance smooth term as in example 4; $corr(t_{i1}, t_{i2})=0.7$.