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Web Appendix A - Derivation of lβ(θ), ∇lβ(θ), and ∇2lβ(θ)

We derive the robustified log-likelihood lβ(θ), ∇lβ(θ), and ∇2lβ(θ) for the Gaussian graphical

model. We first introduce the vec-operators and the duplication matrices. Let vec(A) of a

p × p matrix A = {aij} denote a p2 × 1 vector formed from stacking column vectors of A

and vech(A) denote a p∗ × 1 vector formed from all elements of lower triangular part of A

including diagonals, where p∗ = p(p + 1)/2. The duplication matrix Dp is then defined the

relation:

Dp · vech(A) = vec(A)

for any symmetric matrix A of order p, and D+
p = (D⊤

p Dp)
−1D⊤

p denote the Moore-Penrose

generalized inverse of Dp. The Kronecker product A⊗ B of matrices A and B is defined as

a partitioned matrix with the (i, j)-th block equal to aijB.

The probability density function of multivariate normal distribution is

fΩ(yk) =
|Ω|1/2

(2π)p/2
exp

(
−1

2
y⊤k Ωyk

)
,

and the robustified log-likelihood is then

lβ(Ω) =
1

nβ

n∑
k=1

fΩ(yk)
β − bβ(Ω)

=
1

nβ

n∑
k=1

|Ω|β/2

(2π)pβ/2
exp

(
−β

2
y⊤k Ωyk

)
− |Ω|β/2

(1 + β)p/2+1(2π)pβ/2

=
|Ω|β/2

(2π)pβ/2

[
1

nβ

n∑
k=1

exp

(
−β

2
y⊤k Ωyk

)
− 1

(1 + β)p/2+1

]

= cβ(Ω)

[
1

nβ

n∑
k=1

eβzk(Ω) − 1

(1 + β)p/2+1

]
,

where

cβ(Ω) =
|Ω|β/2

(2π)pβ/2
, zk(Ω) = −1

2
y⊤k Ωyk,
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and

bβ(Ω) =
1

1 + β

∫ (
|Ω|1/2

(2π)p/2

)1+β

exp

(
−1 + β

2
y⊤k Ωyk

)
dyk

=
1

1 + β

|Ω|(1+β)/2

(2π)p(1+β)/2

(2π)p/2

|Ω|1/2(1 + β)p/2

=
|Ω|β/2

(1 + β)p/2+1(2π)pβ/2
.

Let us denote θ = vech(Ω) and then the first derivative of the log-likelihood is

∇lβ(θ) = D+
p · vec

[
∂lβ(Ω)

∂Ω

]
,

and

∂lβ(Ω)

∂Ω
=

1

nβ

n∑
k=1

∂

∂Ω

{
cβ(Ω)e

βzk(Ω)
}
− 1

(1 + β)p/2+1

∂

∂Ω
{cβ(Ω)}

=
1

nβ

n∑
k=1

[
eβzk(Ω) ∂

∂Ω
{cβ(Ω)}+ cβ(Ω)

∂

∂Ω

{
eβzk(Ω)

}]
− 1

(1 + β)p/2+1

∂

∂Ω
{cβ(Ω)} ,

(1)

where

∂

∂Ω
{cβ(Ω)} =

∂

∂Ω

{
|Ω|β/2

(2π)pβ/2

}
=

1

(2π)pβ/2
∂

∂Ω

{
|Ω|β/2

}
=

β

2(2π)pβ/2
|Ω|β/2Ω−1

=
β

2
cβ(Ω)Ω

−1,

and

∂

∂Ω

{
eβzk(Ω)

}
=

∂

∂Ω

{
exp

(
−β

2
y⊤k Ωyk

)}
= −β

2
yky

⊤
k exp

(
−β

2
y⊤k Ωyk

)
= −β

2
eβzk(Ω)yky

⊤
k .

Then, we can easily complete (1) after plug-ins, i.e.,

∂lβ(Ω)

∂Ω
=

1

n

n∑
k=1

cβ(Ω)

2

[
eβzk(Ω)

(
Ω−1 − yky

⊤
k

)
− β

(1 + β)p/2+1
Ω−1

]
. (2)

Notice that setting (2) to 0 gives the robustified estimating equation of the Gaussian graphical

model.
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Next, the second derivative of the log-likelihood is

∇2lβ(θ) = D+
p ·

[
∂

∂Ω

{
∂lβ(Ω)

∂Ω

}]
·Dp,

and

∂

∂Ω

{
∂lβ(Ω)

∂Ω

}
=

1

n

n∑
k=1

∂

∂Ω

{
cβ(Ω)

2

[
eβzk(Ω)

(
Ω−1 − yky

⊤
k

)
− β

(1 + β)p/2+1
Ω−1

]}
=

1

n

n∑
k=1

hk(Ω)

2
,

where

hk(Ω) =
∂

∂Ω

{
cβ(Ω)e

βzk(Ω)Ω−1
}
− yky

⊤
k

∂

∂Ω

{
cβ(Ω)e

βzk(Ω)
}
− β

(1 + β)p/2+1

∂

∂Ω

{
cβ(Ω)Ω

−1
}

=
(
Ω−1 − yky

⊤
k

) ∂

∂Ω

{
cβ(Ω)e

βzk(Ω)
}
+ cβ(Ω)e

βzk(Ω) ∂

∂Ω

{
Ω−1

}
− β

(1 + β)p/2+1

[
Ω−1 ∂

∂Ω
{cβ(Ω)}+ cβ(Ω)

∂

∂Ω

{
Ω−1

}]
.

Since we have ∂
∂Ω

{
cβ(Ω)e

βzk(Ω)
}
and ∂

∂Ω
{cβ(Ω)} in (1), we only need

∂

∂Ω

{
Ω−1

}
= −

(
Ω−1 ⊗ Ω−1

)
to complete hk(Ω).

Finally, we obtain

hk(Ω) =
β

2
cβ(Ω)vec

[
eβzk(Ω)

(
Ω−1 − yky

⊤
k

)
− β

(1 + β)p/2+1
Ω−1

]
· vec

[
Ω−1

]⊤
− β

2
cβ(Ω)e

βzk(Ω)vec
[
Ω−1 − yky

⊤
k

]
· vec

[
yky

⊤
k

]⊤
− cβ(Ω)

(
eβzk(Ω) − β

(1 + β)p/2+1

)[
Ω−1 ⊗ Ω−1

]
.

(3)

Remark : θ = vech(Ω) includes the diagonal elements of Ω for convenience purpose here. So,

the elements of ∇lβ(θ) and ∇2lβ(θ) corresponding to the diagonals should be excluded when

they are applied to the coordinate gradient descent method in Section 3.

Web Appendix B: Simulation with Different Concentration Matrices

In the final set of simulations, we consider four different models where the outliers are

generated from models with different concentration matrices while differing the magnitude

of µ’s. These models mimic the scenarios where the outliers come from models with different
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graphical structures. In particularly, each sample is generated from the following mixture

distribution,

yk ∼ (1− p0)Np(0,Ω
−1) +

p0
2
Np(−µ,Ω−1

0 ) +
p0
2
Np(µ,Ω

−1
0 ), k = 1, . . . , n.

where p0 = 0.1, n = 100, and p = 150. The four different outlier distributions are then

considered in the following models:

Model V : µ = (1, . . . , 1)⊤,Ω0 = Ω′

Model VI : µ = (1.5, . . . , 1.5)⊤,Ω0 = Ω′

Model VII : µ = (1, . . . , 1)⊤,Ω0 = Ip

Model VIII : µ = (1.5, . . . , 1.5)⊤,Ω0 = Ip,

where Ω′ ̸= Ω is a randomly generated precision matrix in the same way that Ω was generated

in the previous simulations, and Ip is a p-dimensional identity matrix. Since the dimension

and sample size are same as the second set of simulations, we still use the same tuning

parameter β = 0.005, 0.01, 0.02, and 0.03 for the robust estimation method.

[Figure 1 about here.]

Figure 1 presents the average ROC curves of glasso and the robust methods over 100

simulation data sets for each model as the tuning parameter λ varies. It is clear that our

proposed robust method still recovers many more true edges than glasso for the same false

positive rates even when the Markov structures are blurred by the outliers. Particularly, the

sensitivities from the robust procedures with β = 0.02 and 0.03 are almost twice higher than

those from glasso for models V I and V III. Similar to the second set of simulations, the

robust tuning parameter β = 0.02 and 0.03 show the best selection performances.

Finally, we consider the scenario where the outliers are not symmetric about the mean and

simulate data from the following model,

Model IX: yk ∼ (1− p0)Np(0,Ω
−1) + p0Np(2, Ip), k = 1, . . . , n.
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where p0 = 0.1, n = 100 and p = 150. The results are shown in Figure 2 for the proposed

robust estimation procedure with different β values. We observe that our proposed robust

method still recovers more true edges than glasso for the same false positive rates and results

in a much higher area under the receiver-operator curve than glasso.

[Figure 2 about here.]

Web Appendix C - Additional Analysis and Figures For Real Data Analysis

We include two additional Figures that are related to the analysis of real data set. Figure 3

shows the illustrative KEGG MAPK pathway from the KEGG database

http://www.genome.jp/kegg/pathway/sce/sce04011.html.

Figure 4 shows the histograms of the gene expression data of genes from the KEGG MAPK

pathway, where the left two plots are the histograms of all the genes in simulated and real

MAPK data sets and the middle and right plots are the histograms for one gene in simulated

and MAPK data sets. Overall, these plots show that the simulated data sets have similar

characteristics as the real MAPK gene expression data.

We calculate the sample skewness of the expression level of each of the 54 genes in the

MAPK pathway and present a summary of the skewness in Table 1, indicating that some

genes have skewed distributions and some have outliers. Figure 5 presents the histograms

of the expression levels of 12 MAPK genes with the smallest skewness. These plots indicate

that that outliers are not always symmetric to the means.

[Table 1 about here.]

[Figure 3 about here.]

[Figure 4 about here.]

[Figure 5 about here.]
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Figure 1. The ROC curves of glasso and the robust method with different robustness
tuning parameters, β = 0.005, 0.01, 0.02, and 0.03 for the third set of simulations with
p = 150, n = 100. The outliers in Models V and VI are generated randomly from multi-
variate normal distributions with different concentration matrices from those of the main
distributions and the outliers in Models VII and VIII are generated from the multivariate
normal distribution with an identity concentration matrix. Models V and VII have 10%
small magnitudes of outliers and and Models VI and VIII have 10% of medium magnitudes
of outliers. Each curve is an average over 100 simulated data sets.
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Figure 2. The ROC curves of glasso and the robust method with different robustness
tuning parameters, β = 0.005, 0.01, 0.02 for Model IX with p = 150, n = 100. The outliers
are simulated to have non-symmetric mean. Each curve is an average over 100 simulated
data sets.
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Figure 3. The yeast MAPK pathway from the KEGG database
http://www.genome.jp/kegg/pathway/sce/sce04011.html.
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Figure 4. The histograms of yeast gene expression data (left), simulated data based on
model III (middle) and model IV (right). The histograms in the upper panel are for the
entire data set, and those in the lower panel are for the expression of gene SWI4 and simulated
data for two genes. All data are re-scaled so that each gene has a mean of 0 and standard
deviation of 1. Models III and IV have 10% of medium and large magnitudes of outliers,
respectively.
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Figure 5. The histograms of yeast gene expression data of 12 genes in the KEGG MAPK
pathway.
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Table 1
Summary of the skewness of gene expressions of 54 genes in the MAPK pathway.

Minimum 1st quartile Median Mean 3rd quartile Maximum
-2.19300 -0.36860 0.05865 -0.01706 0.37830 1.71000
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