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Appendix 

Brief description of causal orientation algorithms 

 ANM: Perform non-linear regression of Y on X to get an estimate f
*
 of f. Calculate the residual Y - 

f*(X), and test if it is independent of X using a kernelized statistical independence test (HSIC) to 

obtain a p-value p1. Repeat the same process in the opposite direction to obtain a p-value p2. If p1 > 

p2 conclude X  Y, otherwise X  Y. 

 PNL: First reformulate the data generating process as a non-linear ICA model where one of the 

sources is the noise term e1 (assuming the model Y = f2(f1(X) + e1)). The noise term is recovered by 

solving an optimization problem which finds non-linearities that make the outputs as independent as 

possible by minimizing their mutual information. Test if the noise term e1 is independent of X using 

a kernelized statistical independence test (HSIC) to obtain a p-value p1. Repeat the same process in 

the opposite direction for Y and noise term e2 (assuming the model X = g2(g1(Y) + e2))
 
to obtain a p-

value p2. If p1 > p2 conclude X  Y, otherwise X  Y. 

 IGCI: Estimate the difference in KL-divergences of P(X) and P(Y) with respect to the reference 

distributions by either estimating the divergences separately and computing their difference, or by 

using an integral-based approximation which directly estimates their difference. If the resulting 

difference is negative, conclude X  Y, otherwise X  Y. 

 GPI-MML: Estimate P(X) by assuming a Gaussian mixture model as a prior distribution of X and 

marginalizing out the parameters. The resulting integral is approximated using a Minimum Message 

Length technique. Then estimate P(Y|X) by marginalizing over noise and function parameters, and 

approximating the resulting integral using non-linear optimization techniques. Combining these two 

quantities gives the likelihood of the observed data given XY: DL(XY) = -log(P(X)) - 
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log(P(Y|X) . Repeat the process, this time estimating P(Y) and P(X|Y), to obtain DL(XY). If 

DL(XY) < DL(XY), conclude X  Y, otherwise X  Y. 

 ANM-MML: Same as GPI-MML, except for a different method of estimating P(Y | X), where the 

covariance matrix used in the Gaussian process is constant with respect to the noise (which reflects 

the additive noise assumption). As before, we obtain the likelihood of the observed data given 

XY: DL(XY) = -log(P(X)) - log(P(Y|X) . Repeating the process, this time estimating P(Y) and 

P(X|Y), we obtain DL(X Y). If DL(XY) < DL(XY), conclude X  Y, otherwise X  Y. 

 GPI: Similar to ANM, only we perform non-linear regression of Y on X and e. Since e is supposed 

to represent all the unobserved causes as well as noise, this can be thought of as accounting for latent 

variables. Estimate the noise e from the equation Y = f*(X,e), and test if it is independent of X using 

a kernelized statistical independence test (HSIC) to obtain a p-value p1. Repeat the same process in 

the opposite direction to obtain a p-value p2. If p1 > p2 conclude X  Y, otherwise X  Y. 

 ANM-GAUSS: Same as ANM-MML, except for a different method of estimating P(X) using a 

single Gaussian, rather than a mixture model. As before, we obtain the likelihood of the observed 

data given XY: DL(XY) = -log(P(X)) - log(P(Y|X) . Repeating the process, this time estimating 

P(Y) and P(X|Y), we obtain DL(XY). If DL(XY) < DL(XY), conclude X  Y, otherwise X 

 Y. 

 LINGAM: Estimate a model of the form Y=b2X+e1 and X=b1Y+e2, where e1 and e2 are independent, 

using independent component analysis (ICA). If b1 < b2, conclude X  Y, otherwise X  Y. 
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Results of causal orientation methods ANM, PNL, and GPI obtained by assessing statistical 

significance of the forward and backward causal models 

Recall that all causal relations in the gold standard are of the type TF → G (“TF” stands for a 

transcription factor and “G” stands for its target gene). The tables below adopt the following notation: 

 TF → G: Number of times the method discovers that the model TF → G is statistically 

significant, while the model TF ← G is not statistically significant (at the given alpha level). 

 TF ← G: Number of times the method discovers that the model TF ← G is statistically 

significant, while the model TF → G is not statistically significant (at the given alpha level). 

 TF ↔ G: Number of times the method discovers that both models TF ← G and TF → G are 

statistically significant (at the given alpha level). 

 TF    G: Number of times the method discovers that neither model TF ← G and TF → G is 

statistically significant at the given alpha level. 

 Accuracy*: Accuracy for confident decisions only, that is computed as:  

TF → G / [TF → G + TF ← G]. 

 

ECOLI results: 

 

Method TF → G TF ← G TF ↔ G TF     G Accuracy* 

ANM (α = 0.01) 53 60 5 1489 0.469 

ANM (α = 0.05) 24 25 2 1556 0.490 

ANM (α = 0.10) 13 15 0 1579 0.464 

PNL (α = 0.01) 172 226 135 1074 0.432 

PNL (α = 0.05) 108 160 65 1274 0.403 

PNL (α = 0.10) 87 138 30 1352 0.387 

GPI (α = 0.01) 120 82 12 1393 0.594 

GPI (α = 0.05) 55 40 2 1510 0.579 

GPI (α = 0.10) 28 15 1 1563 0.651 
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YEAST results: 

 

Method TF → G TF ← G TF ↔ G TF     G Accuracy* 

ANM (α = 0.01) 284 507 230 1627 0.359 

ANM (α = 0.05) 200 350 104 1994 0.364 

ANM (α = 0.10) 148 265 68 2167 0.358 

PNL (α = 0.01) 432 518 569 1129 0.455 

PNL (α = 0.05) 354 425 280 1589 0.454 

PNL (α = 0.10) 281 337 154 1876 0.455 

GPI (α = 0.01) 322 557 356 1413 0.366 

GPI (α = 0.05) 222 385 153 1888 0.366 

GPI (α = 0.10) 170 274 90 2114 0.383 

 

NOTCH1 results: 

 

Method TF → G TF ← G TF ↔ G TF     G Accuracy* 

ANM (α = 0.01) 29 71 449 4 0.290 

ANM (α = 0.05) 79 117 341 16 0.403 

ANM (α = 0.10) 98 156 260 39 0.386 

PNL (α = 0.01) 32 18 499 4 0.640 

PNL (α = 0.05) 69 39 433 12 0.639 

PNL (α = 0.10) 90 69 369 25 0.566 

GPI (α = 0.01) 14 32 499 8 0.304 

GPI (α = 0.05) 54 55 411 33 0.495 

GPI (α = 0.10) 81 75 339 58 0.519 

 

RELA results: 

 

Method TF → G TF ← G TF ↔ G TF     G Accuracy* 

ANM (α = 0.01) 13 112 802 4 0.104 

ANM (α = 0.05) 41 170 696 24 0.194 

ANM (α = 0.10) 60 212 611 48 0.221 

PNL (α = 0.01) 37 22 868 4 0.627 

PNL (α = 0.05) 83 68 766 14 0.550 

PNL (α = 0.10) 120 105 673 33 0.533 

GPI (α = 0.01) 25 38 856 12 0.397 

GPI (α = 0.05) 66 83 729 53 0.443 

GPI (α = 0.10) 84 110 642 95 0.433 
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Detailed results of significance testing of IGCI Gaussian/Entropy and Gaussian/Integral 

methods 

Figures S1-S4 below report causal orientation performance (measured by the AUC or accuracy metric) 

of IGCI methods (Gaussian/Entropy or Gaussian/Integral) in real data (red line in the graphs and second 

column in the tables) and in 1,000 random datasets from Normal distribution with mean 0 and standard 

deviation 1 (blue histograms), as well as empirical probability of observing higher performance in the 

random data than the observed performance in the real data (third column in the tables). 

 Figure S1: IGCI Gaussian/Entropy method assessed with the accuracy metric. 

 Figure S2: IGCI Gaussian/Entropy method assessed with the AUC metric. 

 Figure S3: IGCI Gaussian/Integral method assessed with the accuracy metric. 

 Figure S4: IGCI Gaussian/Integral method assessed with the AUC metric. 
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Figure S1

Dataset Accuracy P-value

ECOLI 0.742 0

YEAST 0.555 0.115

NOTCH 0.848 0.155

RELA 0.898 0.101
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Figure S2

Dataset AUC P-value

ECOLI 0.813 0

YEAST 0.613 0.037

NOTCH 0.935 0.147

RELA 0.967 0.103
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Figure S3

Dataset Accuracy P-value

ECOLI 0.645 0

YEAST 0.587 0.003

NOTCH 0.729 0.152

RELA 0.835 0.045
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Figure S4

Dataset AUC P-value

ECOLI 0.724 0

YEAST 0.655 0

NOTCH 0.834 0.122

RELA 0.927 0.031
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Performance increase due to adding small amount of noise or reducing the sample size in 

YEAST gold standard 

Performance increase due to adding noise: We have plotted output scores of the IGCI methods for each 

transcription factor both with and without added noise. The plots for 5%, 10%, 20%, 30%, 40%, and 

50% of noise are given in Figures S5-S10. To interpret these figures we remind the readers that the 

negative scores correspond to correct orientations, whereas positive scores correspond to incorrect 

orientations. As can be seen, adding noise causes both negative and positive scores (corresponding to 

correct and incorrect predictions, respectively) to converge to zero, as expected. However, as we 

increase the noise level, the IGCI outputs for the cause-effect pairs that have been correctly predicted in 

the noiseless data (i.e., have negative scores) converge to zero slower than the IGCI outputs for the 

cause-effect pairs that have been incorrectly predicted in the noiseless data (i.e., have positive scores). 

As a result, for small amounts of noise, most correct predictions in the noiseless data are retained (they 

still have negative scores) while the incorrect predictions increasingly behave like random. Overall, this 

results in an increase of accuracy.  

For example, assume that we have 100 cause-effect pairs and IGCI correctly predicted 80 of them in 

the noiseless data, resulting in 80% accuracy. Then with the addition of a small amount of noise, we 

retain 80 correct predictions while the 20 other predictions are now classified randomly, resulting in 10 

correct and 10 incorrect. Overall, this leads to 90% accuracy, so we have a 10% increase. 

 Figure S5: Scores for each cause-effect pair in YEAST gold standard obtained using the IGCI 

Gaussian/Entropy method in the data with 5% noise. Cyan points correspond to the IGCI output 

scores in the noiseless data. Grey points correspond to the IGCI output scores for each of the 20 

noisy datasets. Magenta points correspond to the average IGCI output scores over all noisy 
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datasets. The results are plotted based on sorting the IGCI output scores in the noiseless data; 

that is why the cyan points are monotonically increasing. 

 Figure S6: Scores for each cause-effect pair in YEAST gold standard obtained using the IGCI 

Gaussian/Entropy method in the data with 10% noise. 

 Figure S7: Scores for each cause-effect pair in YEAST gold standard obtained using the IGCI 

Gaussian/Entropy method in the data with 20% noise. 

 Figure S8: Scores for each cause-effect pair in YEAST gold standard obtained using the IGCI 

Gaussian/Entropy method in the data with 30% noise. 

 Figure S9: Scores for each cause-effect pair in YEAST gold standard obtained using the IGCI 

Gaussian/Entropy method in the data with 40% noise. 

 Figure S10: Scores for each cause-effect pair in YEAST gold standard obtained using the IGCI 

Gaussian/Entropy method in the data with 50% noise. 
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Figure S5 

 
Figure S6 
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Figure S7 

 
Figure S8 
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Figure S9 

 
Figure S10 
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Performance increase due to reducing sample size: We plotted similar graphs to those described above 

for sample sizes 310, 220, 130 and 40. Decreasing the sample size causes both negative and positive 

scores (corresponding to correct and incorrect predictions, respectively) to converge to zero, as 

expected. However, as we decrease the sample size, the IGCI outputs for the cause-effect pairs that have 

been correctly predicted using all samples (i.e., have negative scores) converge to zero slower than the 

IGCI outputs for the cause-effect pairs that have been incorrectly predicted using all samples (i.e., have 

positive scores). As a result, for certain sample sizes, most correct predictions in the full sample data are 

retained (they still have negative scores), while the incorrect predictions increasingly behave like 

random. Overall, this results in an increase of accuracy. 

 Figure S11: Scores for each cause-effect pair in YEAST gold standard obtained using the IGCI 

Gaussian/Entropy method in the data using 310 samples. Cyan points correspond to the IGCI 

output scores using all 530 samples. Grey points correspond to the IGCI output scores for each 

of the 20 datasets of size 310. Magenta points correspond to the average IGCI output scores over 

all 20 sampled datasets of size 310. The results are plotted based on sorting of the IGCI output 

scores in the full sample data; that is why cyan points are monotonically increasing. 

 Figure S12: Scores for each cause-effect pair in YEAST gold standard obtained using the IGCI 

Gaussian/Entropy method in the data with 220 samples. 

 Figure S13: Scores for each cause-effect pair in YEAST gold standard obtained using the IGCI 

Gaussian/Entropy method in the data with 130 samples. 

 Figure S14: Scores for each cause-effect pair in YEAST gold standard obtained using the IGCI 

Gaussian/Entropy method in the data with 40 samples.  
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Figure S11 
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Figure S13 

 
 

Figure S14 
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