In vitro Cytostatic and Cytocidal Activity of Quinoline Antimalarial Drugs vs. Inhibition of Hemozoin Crystal Growth

Supplemental Information Available: Propionate buffer optimization, lipid catalyst concentration optimization, physical and pharmacokinetic properties, antiplasmodial IC₅₀ and LD₅₀, and BHIA IC₅₀ for all antiplasmodial drugs and drug analogues; ¹H and ¹³C NMR spectra for compounds synthesized in this study (**6-9**).

Alexander P. Gorka^{*}, John N. Alumasa^{a,*}, Katy S. Sherlach, Lauren M. Jacobs, Katherine B. Nickley^b, Jonathan P. Brower^c, Angel C. de Dios, and Paul D. Roepe[#]

Department of Chemistry, Department of Biochemistry, Cellular, & Molecular Biology, and Center for Infectious Diseases

Georgetown University, 37th and O Sts. NW, Washington, DC 20057

^aCurrent Address: Department of Biochemistry & Molecular Biology, The Pennsylvania State University, University Park, PA 16802

^bCurrent Address: Georgetown University School of Medicine, 3900 Reservoir Rd. NW, Washington, DC 20057

^cCurrent Address: Tufts University School of Medicine, 136 Harrison Ave., Boston, MA 02110

Supported by NIH grants AI045957 (PDR) and AI060792 (AdD, PDR)

[#]Address correspondence to PDR: Tel +1 202 687 7300; Fax +1 202 687 6209;

E-mail: roepep@georgetown.edu

*A. Gorka and J. Alumasa contributed equally to the presented work.

Figure S1. Optimization of lipid catalyst concentration. A) Effect of PC (solid bars), 1monopalmitin (pMAG, open bars), and 1-monostearin (sMAG, shaded bars) on Hz yield; B) Effect of PC concentration on Hz yield. Hz yield was measured in the presence of 100 μ M FPIX, 1 M propionate buffer (pH 5.2) at 37 °C over a 4 h period. Error bars represent the standard error of the mean resulting from three replicate measurements.

Figure S2. Optimization of propionate buffer concentration. The effect of propionate buffer concentration on Hz yield was measured at pH 5.2 in the presence of 100 μ M FPIX and 0.5 mg/mL PC at 37 °C using the 16 h assay described in the Methods. Error bars represent the standard error of the mean resulting from three replicate measurements.

Table S1. Physical and pharmacokinetic properties, antiplasmodial IC_{50} and LD_{50} , and BHIA IC_{50} for antimalarial drugs and drug analogues used in this work.

					Antiplasmodial $IC_{50} (nM)^d$		Antiplasmodial $LD_{50} (\mu M)^e$		BHIA IC ₅₀ $(\mu M)^d$	
Cpd ID	MW (g/mol)	pKa ^a	ClogP ^b	Diffusion Coefficient (x 10 ⁻⁶ cm ² /s) ^c	HB3	Dd2	HB3	Dd2	pH 5.6	рН 5.2
CQ	318.19	7.65 9.86	4.65	5.00	19.6 (0.4)	201.5 (9.1)	0.12 (0.01)	16.5 (2.1)	52.9 (8.0)	194.9 (5.6)
QN	324.42	5.69 9.10	3.26	5.00	107.2 (12.4)	265.6 (14.6)	9.1 (0.4)	36.3 (9.1)	42.5 (8.3)	255.4 (22.7)
QD	324.42	5.69 9.10	3.26	5.00	41.9 (6.0)	174.2 (3.1)	0.43 (0.1)	33.6 (0.1)	27.2 (2.7)	176.2 (4.9)
AQ	355.86	5.84 9.88	4.09	4.82	10.0 (3.3)	27.7 (2.9)	0.04 (0.007) ^f	$0.05 (0.004)^{\rm f}$	22.1 (0.9)	70.1 (1.3)
1	294.95	5.11 8.59	4.58	5.26	9530.0 (39.5)	5500.0 (28.2)	79.9 (0.1)	94.4 (0.8)	39.6 (2.2)	312.6 (10.1)
2	305.90	7.50 9.81	4.34	4.99	6.0 (0.7)	26.0 (3.5)	0.23 (0.01)	0.52 (0.01)	8.2 (0.9)	37.8 (6.2)
3	319.90	7.56 9.48	4.82	4.82	12.0 (0.9)	199.0 (11.1)	3.8 (0.1)	15.7 (1.0)	11.2 (2.0)	65.2 (8.1)
4	363.92	4.93 7.48 9.58	5.16	4.45	95.0 (10.6)	169.0 (16.2)	7.1 (0.1)	41.3 (0.1)	17.0 (2.5)	117.0 (12.6)

5	362.90	7.70 9.35	3.15	4.48	79.0 (5.9)	94.0 (10.7)	0.80 (0.01)	51.5 (5.1)	7.2 (1.2)	142.4 (14.9)
6	249.74	7.65 10.04	2.44	5.97	2990.0 (31.8)	2390.0 (33.4)	45.2 (0.1)	17.4 (1.3)	44.5 (7.5)	209.0 (17.1)
7	292.92	7.44 9.17	4.40	4.46	> 10000	3720.0 (42.5)	2.8 (0.02)	2.7 (0.01)	53.0 (8.2)	96.0 (12.4)
8	451.00	7.64 8.05	4.39	4.13	1680.0 (23.5)	6970.0 (51.2)	2.8 (0.02)	3.9 (0.07)	52.5 (6.1)	172.5 (16.3)
9	350.89	7.64 8.99 9.55	1.40	4.82	1390.0 (19.5)	8070.0 (62.3)	8.6 (0.05)	2.8 (0.01)	117.5 (19.2)	121.5 (18.3)

^aCalculated using the SPARC online calculator (sparc.chem.uga.edu/sparc/liqpka/index.cfm?ionize=N13). pKas are for the quinolinyl and side chain aliphatic nitrogens, respectively, with the former listed from left to right beginning at the quinoline branch point (see Figure 5).

^b Calculated for octanol/water using the SPARC online calculator.

^cCalculated for water diffusion using the SPARC online calculator.

^dIC₅₀ values are an average of three independent trials, each performed in triplicate (9 replicates total). SEM is shown in parentheses.

^eLD₅₀ values are an average of two independent trials, each performed in triplicate (6 replicates total). SEM is shown in parentheses.

^fPaguio MF, Bogle KL, Roepe PD. 2011. *Plasmodium falciparum* resistance to cytocidal versus cytostatic effects of chloroquine. Mol. Biochem. Parasitol. 178:1-6.

¹³C NMR Spectrum (100 MHz, CDCl₃) for 6

¹H NMR Spectrum (400 MHz, CDCl₃) for 7

¹H NMR Spectrum (400 MHz, CDCl₃) for 8

¹H NMR Spectrum (400 MHz, CDCl₃) for 9

