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Material and Methods 

E. coli culturing and phenotyping 
Phenotype information, including metabolite uptake rates and growth rates were 

previously obtained for aerobic growth on glucose, glycerol, and propylene glycol and 
anaerobic growth on glucose (30-32). We augmented these data with additional growth 
phenotyping data for anaerobic growth on glucose M9 minimal medium with and without 
nitrate (Table S1). Glycerol stocks of E. coli K-12 MG1655 were inoculated into 2 g/L 
glucose M9 minimal media and grown at 37°C overnight. Freshly sparged media was 
inoculated with the overnight culture to the optical density at 600nm of 0.02. To measure 
growth on nitrate, the protocol was repeated, with the exception that the anaerobic culture 
was supplemented with potassium nitrate (20 mM) at 37°C. Cells were grown 
exponentially while sampling growth rates and media multiple times. Growth rates were 
determined by measuring the optical density of cultures at 600nm. Glucose uptake and 
byproduct secretion were also measured by HPLC. The range of feasible nitrate uptake 
rates was approximated from the iAF1260 model of E. coli by constraining the model 
growth rate and glucose uptake rate to the measured values (0.34 0.007 h-1, and 4.05
0.5 mmol gDW-1 h-1, respectively) and minimizing/maximizing nitrate update using flux 
balance analysis (33). However, as shown in fig. S16, our results were qualitatively 
robust with variations in nitrate uptake rate within the computed range.  
 

Gene-expression profiling 
To provide support for the MCMC sampling-based computational flux change 

predictions, we compared these with gene expression changes. This was done using 
expression data sets generated for this study and published microarray data in which 
cultures of exponentially-growing E. coli were profiled under aerobic conditions on  
glucose, glycerol, or propylene glycol M9 minimal media and anaerobically on glucose 
M9 minimal media with and without added nitrate (17, 31, 32). The glycerol-glucose 
shift provides support for the changes between substrates that are metabolized similarly, 
while the glycerol-propylene glycol shift data we present here support our results for 
substrates that differ substantially in how they are metabolized, despite only differing by 
one hydroxyl group in the molecular structure.  

Since E. coli cannot normally grow on propylene glycol, a strain of E. coli K-12 
MG1655, adapted for glycerol growth was evolved to also metabolize propylene glycol 
(30, 34). This strain was subsequently grown and expression profiled on both 2g/L 
glycerol M9 minimal media and 2g/L propylene glycol M9 minimal media at 37°C. 
Affymetrix E. coli Antisense Genome Arrays were used for all transcriptional analyses. 
Each experimental condition was tested in triplicate in the respective carbon sources (i.e., 
glycerol or propylene glycol) using independent cultures and processed following the 
manufacturer-recommended protocols. Cultures were grown to mid-exponential growth 
phase aerobically (OD600 = 0.3) in minimal media, supplemented with the appropriate 
carbon source. Three ml of culture was added to 2 volumes of RNAprotect Bacteria 
Reagent (Qiagen) and total RNA was then isolated using RNeasy columns (Qiagen) with 
DNase I treatment. Total RNA yields and quality were measured using a Nanodrop 1000 
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(Thermo Scientific) and agarose gels. cDNA synthesis, fragmentation, end-terminus 
biotin labeling, and array hybridization were performed as recommended by the 
Affymetrix standard protocol.  

The Affymetrix CEL files were normalized using GCRMA (version 2.20.0) 
implemented in R (version 2.11.1).  Genes were considered not expressed if their median 
expression level across replicates was lower than than the median value of intergenic (IG) 
probes. Genes were subsequently removed from further analysis if they were not 
expressed in any conditions. Differentially expressed genes were determined using a two-
tailed t-test followed by false discovery rate (FDR) P-value adjustment (FDR ≤ 0.01). 
 

Designation of specialist and generalist enzymes 
For this study we classified 1,147 enzymes from the E. coli genome-scale model 

(iAF1260) (5) following the detailed process shown in Fig. S17. First, we identified 
1,081 proteins with enzymatic activity, as reported in the EcoCyc Database (35). The 66 
proteins that were removed did not have experimentally-validated catalytic activities. 
These included non-catalytic members of enzyme complexes (e.g., the electron 
transferring protein flavodoxin (b0684)) and predicted enzymes (e.g., predicted 
carbamate kinase (b0521)). Among these 1,081 enzymes, through careful manual 
curation, 677 enzymes were classified as specialists, which only catalyze one specific 
chemical reaction, and 404 enzymes were classified as generalist enzymes since they 
catalyze more than one reaction (Fig. S17A).   

Following enzyme classification, specialist enzyme reactions (SERxns) and 
generalist enzyme reactions (GERxns) were identified and classified (Fig. S17B). The 
reaction lists were also filtered to remove reactions with ambiguous classification. We 
also note that transport reactions were removed as they usually do not represent canonical 
metabolic catalysis beyond, for example, ATP hydrolysis in ABC transporters. However, 
the presence of transporters did not qualitatively change the results in this work (Fig. S3).  
 

Markov chain Monte Carlo sampling 
The distribution of feasible fluxes for each reaction in the models used here were 

determined using Markov chain Monte Carlo (MCMC) sampling (36), as previously 
described (37, 38), and was implemented with the COBRA Toolbox v2.0 (39). Published 
uptake rates were used to constrain the models. To model more realistic growth 
conditions (40), sub-optimal growth was modeled. Specifically, the biomass objective 
function, a proxy for growth rate (41), was provided a lower bound of 90% of the optimal 
growth rate as computed by flux balance analysis (33). Thus, the sampled flux 
distributions represented sub-optimal flux-distributions, but still simulated fluxes relevant 
to cell growth and maintenance. 

MCMC sampling was used to obtain thousands of feasible flux distributions 
(referred to here as “points”) using the artificially centered hit-and-run algorithm with 
slight modifications, as described previously (37, 38). Briefly, a set of non-uniform points 
was generated. Each point was subsequently moved randomly, while remaining within 
the feasible flux space. To do this, a random direction was first chosen. Second, the limit 
for how far the point can travel in the randomly-chosen direction was calculated. Lastly, a 
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new random point on this line was selected. This process was repeated until the set of 
points approached a uniform sample of the solution space, as measured using the mixed 
fraction metric described previously (42). A mixed fraction of approximately 0.50 was 
obtained, suggesting that the space of all possible flux distributions is nearly uniformly 
sampled.  

For each reaction, a distribution of feasible steady-state flux values was acquired 
from the uniformly sampled points, subject to the network topology and model 
constraints. For the E. coli model such distributions of feasible flux values could be 
determined for 2,314 of the 2,382 reactions. The remaining 68 reactions were involved in 
loops (43) and therefore reliable flux estimates were not available. Thus, sampling 
distributions for these 68 reactions were removed from all analysis in this work. Similar 
measures were taken for all other models in this work. 
 

Model parameterization 
In general, metabolic models were used in their published format with published 

uptake and secretion rates (5, 20-22, 31, 44). For the 174 simulated media formulations in 
E. coli, uptake rates were estimated as follows. After setting the glucose uptake to zero in 
the iAF1260 model, flux balance analysis was used to find which of all other carbon 
sources could support growth. For each of the 174 growth-supporting carbon sources, an 
uptake rate was set that was consistent with the uptake rate of glucose in the published 
iAF1260 model (i.e., 8 mmol gDW-1 hr-1), normalized by the number of carbons in the 
metabolite. For example, since glucose has 6 carbons, the uptake rate of lactate, with 3 
carbons, was set as 16 mmol gDW-1 hr-1 (which is similar to the actual reported lactate 
uptake rate in M9 minimal media (32)). While this was used to standardize the media 
conditions, variations in carbon uptake rates did not significantly impact the results 
presented in this work. 

All models were selected based on the availability of carefully curated genome-scale 
metabolic network reconstructions with measured metabolite uptake rates. Specific media 
conditions for the eukaryotic and archaea models included the following. M. barkeri 
growth was simulated on minimal media containing methanol, acetate, pyruvate, or H2 
and CO2. S. cerevisiae growth was simulated with glucose, acetate, ethanol, and maltose 
minimal media. For C. reinhardtii, three growth conditions were used: light with no 
acetate, light with acetate, and dark with acetate. Further details on media formulations 
are provided elsewhere (20-22, 44). 

 

Ranking of flux magnitude 
We compared the flux magnitudes of SERxns and GERxns. In order to avoid biases 

resulting from variations between growth conditions, we used a rank-based metric to 
compare flux between conditions. This was done as follows. The median flux magnitude 
values for each reaction were calculated from the MCMC-sampled flux loads for each of 
the 174 media formulations. For each condition, reactions were filtered out if they were 
transporter related, involved in loops,  non-enzymatic, or unable to carry flux. The 
median fluxes for each reaction were then rank-ordered and the distributions of ranks for 
SERxns and GERxns were compared. In comparing the relative flux between reactions, 
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higher flux magnitudes correspond to higher rank in this study. The significance of higher 
flux magnitudes in SERxns were statistically evaluated by using one-tailed t-tests and 
Fisher’s method. 

 

Essentiality 
Gene essentiality was assessed in comparison to a previously published set of 300 

experimentally-determined essential genes in E. coli (11). In addition, an in silico 
analysis was used to assess reaction essentiality with respect to the synthesis of biomass 
precursors, since we hypothesize that the selective pressure would exert its influence 
through the reactions themselves. The in silico approach used MCMC sampling to 
simulate growth (>95% of the in silico-predicted optimal growth rate). The distributions 
of feasible flux values of each reaction was used to assess the correlation of flux between 
it and the biomass reaction (a pseudo-reaction that simulates the consumption of all 
biomass precursor metabolites in order to produce biomass) (41). Reactions that 
significantly contribute to or are essential for growth are identified by having a 
significant P-value from the computation of the Pearson’s correlation coefficient. While 
we selected a P-value cutoff of 1x10-10, the results were consistent for any reasonable P-
value cutoff (Fig. S6). These correlated reactions contain no redundant pathways, and 
would therefore provide the most stringent selective pressures since they are the most 
essential reactions. 

 

Flux change predictions in media shifts 
To simulate changes in reaction flux occurring in a shift between two conditions, the 

sampled fluxes for each reaction were compared between two media conditions as 
follows. First, reactions that carried no flux in both conditions or that were involved in 
loops (43) were removed and not used in further analysis. Next, flux magnitudes were 
normalized between each pair of media conditions. To do this, the flux value of each 
sample point was divided by the sum of all flux magnitudes for the sample point. 

∑
=

=
n

i
ijijij fluxabsfluxfluxnormed

1
)(/_    , n = number of reactions 

Once the flux values were normalized, the changes of fluxes between two conditions 
were determined as previously described (37, 45). Briefly, differential flux for each 
reaction was determined by assuming that a reaction is differentially activated if the 
distributions of feasible flux states (obtained from MCMC sampling) under two different 
conditions do not significantly overlap. For each metabolic reaction, a P-value was 
obtained by computing the probability of finding a flux value for a reaction in one 
condition that is equal to or more extreme than a given flux value in the second condition. 
Significance of P-values were adjusted for multiple hypotheses (FDR ≤ 0.01). 

 

Clustering of reaction changes 
An m x n binary matrix with m reactions and n media shifts (n = 15,051) was made, 

detailing in which shifts each reaction significantly changed flux (FDR ≤ 0.01). The 
reactions were subjected to K-means clustering (K = 3). Clustering was repeated 100 
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times with different seed values to find consensus clusters. Enrichment tests in the 
clusters were done using the hypergeometric test. 

 

Enrichment of metabolic regulation 
Lists of metabolic proteins with post-translational modifications (PTMs) were 

obtained from studies that identified sites of protein acetylation, phosphorylation, and 
succinylation in E. coli (18, 46-48). All reported occurrences of non-covalent metabolite-
mediated metabolic regulation were obtained from EcoCyc (35). Metabolic regulation 
events labeled in EcoCyc as allosteric, noncompetitive, and uncompetitive were used. 
Competitive inhibition was also analyzed and compared with the others to distinguish 
between different regulatory properties of these enzymes (Fig. S11). Enrichment and 
depletion of PTMs and metabolite-mediated metabolic regulation events in the gene lists 
and reaction clusters were determined using the hypergeometric test. 

 

Cosine similarity 
The patterns of how reaction flux changes when two or more reactions share the 

same generalist enzyme were estimated by using the cosine similarity metric. For each 
shift, the median flux magnitudes of a reaction in conditions x and y were represented as 
a vector (Rα(fx, fy)). The similarity score of two reactions, α and β, was then measured by 
the cosine similarity of the two vectors, Rα and Rβ. 

βα

βα
βα RR

RR
RR

×

•
=

)(
),cos(  

The similarity score of reactions catalyzed by the same enzyme (ei) was calculated 
as the mean value of all pair-wise cosine similarity scores for reactions catalyzed by that 
generalist enzyme. 

nRRe
n

i /)),abs(cos()(similarity ∑= βα  

For example, for an enzyme e1 that catalyzes three reactions (r1, r2, and r3), the 
flux similarity score of e1 is calculated as an average value of cosine distances of three 
reaction pairs (Fig. S10A). Similarity scores for generalist enzymes were compared to 
2000 cosine similarity scores from randomly-selected reaction pairs.  

 

Assessment of kinetic parameters 
Differences in enzyme kinetic parameters were assessed using previously curated 

kcat values for wild-type enzymes in E. coli K12 (23). Significance in comparisons were 
made using the Wilcoxon rank sum test.  
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Supplementary Text 

More detailed properties of generalist enzymes and an assessment of classification 
robustness 

Among these 1,081 enzymes, 677 enzymes were classified as specialists, which only 
catalyze one specific chemical reaction. The 404 enzymes catalyzing more than one 
reaction were classified as generalist enzymes (Fig. S17A). These specialists and 
generalist enzymes are encoded by 720 genes and 473 genes, respectively. We anticipate 
that a small fraction of enzymes may be misclassified due to incomplete study of some 
enzymes or incorrect interpretation of biochemical studies. However, these concerns 
should not substantially affect the conclusions in this work, since variations on the 
categorization yield qualitatively similar results (see Fig. S3). In this classification, 
among the canonical generalist enzymes, we found that 89% of the generalist enzymes 
are enzymes that exhibit substrate promiscuity, and 11% are multifunctional enzymes 
(Fig. S1A). Furthermore, 3% were multifunctional with promiscuous active sites. Lastly, 
2% were bifunctional enzymes in which the different catalytic activities were used 
exclusively to catalyze two reactions in series on one substrate (e.g., in substrate 
channeling). More detailed explanation for combining substrate promiscuity and 
multifunctional enzymes is provided in the section entitled ‘Justification of combining 
promiscuous and multifunctional enzymes into the “generalist” class’. 

Individual generalist enzymes catalyzed between 2 and 249 reactions. Once the 
transporters were filtered out, about 50% (189 enzymes) of generalist enzymes catalyzed 
two distinct reactions in the model. Furthermore, the catalytic degree of generalist 
enzymes closely followed power-law distribution (P(k) ~ ck-1.6) (Fig. S1B).  

Recently, Khersonsky et al. introduced the concept of degree of promiscuity, which 
measures the functional diversity of enzymes (49). Here, we assessed the degrees of 
functional diversity for generalist enzymes using the unique Enzyme Commission (EC) 
numbers. The EC numbers of enzymes were collected from the KEGG database (50). As 
Fig. S1C depicts, the majority of generalist enzymes had a single or two unique EC 
numbers, suggesting that reactions catalyzed by many generalist enzymes in E. coli often 
involve similar substrates.  

One of the most trivial explanations for the categorization of an enzyme as a 
specialist or as a generalist is the biased depth of knowledge in enzymes. We attempted to 
rule out this possibility with respect to E. coli metabolism, as carefully detailed and 
curated in the iAF1260 reconstruction. Specifically, we quantified the number of 
abstracts per gene of  E. coli K-12 MG1655 in MEDLINE to assess if the accumulated 
knowledge is uniformly represented in the classes of specialist and generalist enzymes. 
The number of MEDLINE abstracts was calculated by using the genes2pubmed file from 
NCBI FTP repository (downloaded October 20, 2011). The 1,260 genes in iAF1260 had 
total number of 61,727 citations (Fig. S1D). Genes associated with specialist and 
generalist enzymes had similar numbers of MEDLINE abstracts (Fig. S1E). That is, we 
found no correlation between our classification and knowledge depth. Neither specialist 
nor generalist enzymes had been studied in greater depth, which leads to the conclusion 
that the catalytic degree of generalists in iAF1260 does not likely result from increased 
study of either group. 



 
 

7 
 

We further investigated this hypothesis that specificity assignments might solely 
reflect the level of study by looking to see if generalists occurred more in the well-studied 
central metabolic pathways or less studied periphery of the metabolic network. The 
specialists and generalists are not uniformly distributed among metabolic subsystems in 
E. coli (Fig. S1F). Specialist enzymes are more frequently associated with core processes 
such as tRNA charging and central metabolism (including glycolysis, TCA cycle, and the 
pentose phosphate pathway), and generalist enzymes are more frequently associated with 
more peripheral pathways, such as murein biosynthesis and glycerophospholipid 
metabolism.  

One may argue that the activities of generalists in these peripheral pathways may be 
latent promiscuous enzyme activities measured in vitro, and that these activities are likely 
not functional in vivo. In this study we focus on these in vivo enzymatic activities, since 
only these will be under evolutionary selection. Furthermore, the classification of 
generalists and specialists assumes that all of the associated reactions can be active in 
vivo and do not represent latent promiscuous activities. Thus, it is necessary that the 
reactions be assessed as to if they can take place in the context of the metabolic network 
(i.e., if pathways providing reaction precursors are present and carry flux, and if the 
products can be metabolized or secreted). To do this, we simulated flux through GERxns 
using experimentally-measured phenotype data from six media conditions (i.e., substrate 
uptake rates). These six conditions included M9 minimal media supplemented with (i) 
glucose, (ii) glycerol, (iii) propylene glycol (evolved, see (30)), (iv) glycerol (evolved on 
propylene glycol, see (30)), (v) glucose under anaerobic conditions, and (vi) glucose with 
nitrate under anaerobic conditions. Flux distributions were simulated using MCMC 
sampling implemented in the COBRA Toolbox v.2.0 (39). 

After filtering out thermodynamically-infeasible loops (43) and transport reactions, 
the ratio of reactions that carry non-zero predicted flux was computed. From this 
analysis, about 80% of GERxns carried flux in any one growth condition (Fig. S2). When 
this analysis was repeated for the 174 possible carbon sources (aerobic and anerobic), 
85% of the GERxns could carry flux in at least one growth condition. We note that 
transporters and tRNA charging reactions were removed from this analysis. The high 
percentage of active GERxns, and the fact that the percentage was not lower than 
SERxns, suggests that the GERxns are more likely to be reactions that occur in vivo and 
not latent promiscuous activities that are only relevant in vitro. 

While we are confident in the classification system, we note that it is entirely 
possible that the classification of individual enzymes may change with further study. 
However, it seems that specialist enzymes tend to be well-studied and overrepresented in 
core metabolic processes, and that generalist enzyme functions mostly do not represent 
latent promiscuous activities with only in vitro relevance. Furthermore, we have tested 
the robustness of many results with respect to variations in classification and found 
qualitatively similar results (Fig. S3). Therefore, we are confident that the classification is 
robust enough to be amenable to variations and updates and still provide qualitatively 
similar results, compared to what was presented in the main text of this study. 
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Fig. S1. 
Properties and knowledge depth of specialist and generalist enzymes. (A) Generalist 
enzymes can be further partitioned into subclasses. The majority of the non-transporter 
generalist enzymes in the E. coli metabolic network exhibit substrate promiscuity. Only 
11% had more than one active site. (B) The network topology degree of generalist 
enzymes is represented in log-scale, with the X-axis showing the number reactions, and 
y-axis showing the frequency. (C) The distribution of degrees of promiscuity for 
generalist enzymes shows that a large percentage of generalist enzymes catalyze multiple 
similar reactions. The X-axis shows the number of unique EC numbers for an enzyme, 
with their frequency represented by the y-axis. (D) The total number of MEDLINE 
abstracts were counted in E. coli K-12 MG1655 and iAF1260. (E) The classification is 
likely not biased by the lack of study of either class of enzymes. Box plots show the 
number of MEDLINE abstract for each gene for specialists (Spec.), generalists with 
transporters (Gen.), and generalists without transporters (Gen. w/o T). (F) The numbers 
of SERxns and GERxns are shown for all 35 E. coli metabolic functional subsystems in 
iAF1260. The ratio of SERxns (green) and GERxns (yellow) in the functional subsystems 
is depicted on each bar. The circles above functional subsystem bars represent which 
subsystems have a significant over-representation of SERxns or GERxns against the 
background distribution (Green dot: enrichment of SERxns, yellow dot: enrichment of 
GERxns, hypergeometric test, P ≤ 0.05). 

 
 
 

 
Fig. S2. 
Most reactions associated with specialist and generalist enzymes can be active in 
silico. The percentage of reactions carrying flux for each growth condition was computed 
for reactions associated with specialist enzymes (SERxns) and generalist enzymes 
(GERxns). For any given condition, ~80% of the GERxns (yellow) were active, and 85% 
of the GERxns were active in at least one of all simulated conditions (174 carbon sources 
under aerobic and anaerobic conditions).  
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More stringent classifications of generalists 
In order to demonstrate the robustness of our results with variations in the 

classification of SERxns and GERxns, we further examined the percentage of reactions 
that change in environmental shifts for (i) GERxns with transport reactions added back 
into the set, (ii) conditional GERxns (cases in which more than one reaction is active for 
a generalist enzyme under the given condition) and (iii) subclasses of GERxns (reactions 
associated with promiscuous and multifunctional enzymes).  

The assignment of conditional GERxns followed the schema in Fig. S3A.  Since the 
magnitude of flux varies in the environmental changes, a generalist enzyme might only 
catalyze only a single reaction under a specific condition since substrates for its other 
reactions might not be available under that condition. For example, suppose there is a 
generalist enzyme that catalyzes reaction r1 and reaction r2 (Fig. S3A). If, in a given 
growth condition A, both reactions r1 and r2 carry flux, the reactions are classified as type 
I conditional GERxns for the given condition. However, if in another condition B, the 
enzyme only catalyzes one reaction (r1) (since reaction r2 cannot carry flux), the reactions 
are classified as type II conditional GERxns in condition B. For the assessment of 
conditional GERxns, type II conditional GERxns are not considered in our shift analysis 
here. The total number of type I conditional GERxns in five representative perturbations 
are listed in the Table S2. 

When we assessed the effects of GERxns with transporting reactions, conditional 
GERxns and subclasses of GERxns on the fraction of reactions that change, it is clear that 
none of these changes qualitatively change the results of this study. Specificially, the 
fraction of reactions with significantly different flux values in shifts continues to vary 
greatly by enzyme class (Fig. S3B). This analysis was also repeated on a recently 
published update to the E. coli K12 metabolic reconstruction, iJO1366 (51), which 
showed qualitatively similar results  (Fig. S3C). 
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Fig. S3. 
Robustness of result showing the association of specialist enzymes with growth 
condition shifts. (A) A conceptual illustration is provided, describing conditional 
GERxns. Left: For type I conditional GERxns, their associated generalist enzyme 
catalyzes more than one active reaction under a given condition. Right: For type II 
conditional GERxns, their associated generalist enzyme catalyzes only one active 
reaction under the given condition. Only type I conditional GERxns were considered in 
our shift analysis here. (B) The percentage of SERxns (green), GERxns without 
transporters (GERxns w/o T; yellow), GERxns including transporters (GERxns w/ T; 
light-yellow), conditional GERxns (brown), substrate promiscuity GERxns (tan), and  
multifunctional GERxns (dark-blue) that change were computed using the iAF1260 
model. (C) The percentage of SERxns (green), GERxns without transporters (yellow), 
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GERxns including transporters (light-yellow), and conditional GERxns (brown) that 
change were also computed using the iJO1366 model. 

Strengths and limitations of the model employed in this analysis 
The results of this work depends in part upon the accuracy of the models employed. 

The models here are “genome-scale” with respect to metabolism, but do not include non-
metabolic processes. This may be a modest concern since dynamic natural environments 
exert their influence through complex regulation, signaling, and protein-protein 
interactions. However, even though this work does not explicitly account for these 
mechanisms, we feel that the study of properties of enzyme specificity can be done 
reliably here for a few reasons we list below. 

First, the definition of specialist and generalist enzymes is the basis of this work. 
These designations are based on the curation of decades of careful biochemical studies. 
This curation process has been handled by several researchers over the course of about 20 
years (5, 51-56). There may be some inaccuracies in the E. coli model from mistakes in 
previous biochemical studies or in the interpretation of these studies. However, it is 
believed that these are mostly correct because of the success of these models in predicting 
growth phenotypes (57). We also note that the authors of this work have manually 
curated all generalist enzymes and classified these as multifunctional or exhibiting 
substrate promiscuity (see Database S1).  

Second, the model used accounts for almost a third of all genes in E. coli. 
Furthermore, the detailed biochemical functions are included, manually curated, and all 
chemical reactions are mass balanced. While it may be desirable to include processes that 
are not as well characterized, such as transcription regulation, protein-protein 
interactions, etc., efforts are still underway to find modeling methods that best account 
for these and more accurately simulate the effects of these interactions. However, since 
the question we have approached in this study addresses the evolution of metabolic 
enzymes, the genome-scale metabolic network accounts rather well for the scope and 
functions of this system. It allows the assessment of selective pressures on it. 

Third, the accuracy of the E. coli metabolic model is apparent in its ability to 
accurately predict growth phenotypes on measured growth conditions for 76% of 
different minimal media formulations and 92% of tested single gene deletion mutants (5). 
While the predictions are less reliable for organisms that have not been characterized 
biochemically as carefully, these models provide reliable predictions for how all of the 
metabolic enzymes contribute to the cell phenotype. Thus, since we are directly 
investigating the evolution of metabolic enzymes, the metabolic network accounts for all 
of these enzymes and many of the factors shaping enzyme specificity. 

Fourth, we show in the supporting materials here that differential flux under 
substrate shifts correlated strongly with differential gene expression (Fig. S8). This is also 
true for differential expression of protein, as measured using quantitative proteomics 
(Lewis, et al., in preparation). Other studies have also shown that the expression of 
metabolic genes and proteins is optimized in laboratory evolution (58). Therefore, it 
seems that in metabolism, gene and protein expression may change to follow the 
metabolic needs of the cell, as predicted in silico. 

Fifth, the constraints imposed on the metabolic network by mechanisms such as 
signaling and transcription regulation are malleable. These mechanisms evolve more 
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rapidly than does metabolism (59), and so if they are temporarily constraining the 
evolution of enzymes in a sense that is non-optimal, evolution can ease these constraints 
(see for example (60, 61)). Thus, it is likely that they do not exert a substantial influence 
on the time scale in which enzymes evolve. 

In conclusion, we do not expect that all flux predictions will be completely correct, 
since this model suffers a small rate of incorrect predictions when genes are 
systematically removed (suggesting that pathway usage predictions are not completely 
correct or that transcription regulation might be temporarily affecting phenotype). 
However, the fact that most growth and gene deletion predictions are correct provides 
some confidence in the assessment of general network properties as we present here (e.g., 
flux of two general classes of enzymes, essentiality of reaction deletion, and differential 
reaction flux under varying environments). In addition, the comparison of our results with 
known enzyme regulation and post-translational modifications only provide further 
experimental evidence that the results presented here are supported by real data. 

In the future, we anticipate that the results presented here may be enhanced as 
models begin to include other cell processes. While much of the literature on enzyme 
specificity focuses on metabolic reactions, there are many examples of specificity of 
protein-protein interactions, kinase-target interactions, codon-tRNA interactions, etc. that 
may be addressed in the future. Current efforts are now expanding the scope of these 
models to account for additional systems such as the transcription and translation 
machinery (62) and also protein structures (63, 64). While the model used here can still 
account for the biochemical functions of ~1/3 of all proteins in E. coli, the new larger 
models will facilitate more broad studies since they will account for mechanisms 
including transcription, translation, and transcription regulation. Since these will add 
~600 more genes in E. coli, we anticipate that they will provide additional insight but that 
the results should not deviate far from the results we present here. Future work, with 
improved genome-scale models, will be important to build upon the results in this work. 

 

Specificity is selected and maintained in high-flux metabolic pathways 
In the main text, it was shown that SERxns maintain higher flux than do GERxns 

(Fig. 1C). While this was demonstrated by looking at the median value of all feasible flux 
levels for each reaction, this result was also obtained when using the average or mode of 
flux for each reaction (Fig. S4A). The rank distribution of median flux through SERxns is 
significantly higher than flux through all GERxns, GERxns catalyzed by enzymes 
exhibiting substrate promiscuity, and GERxns catalyzed by multifunctional enzymes 
(Fig. S4B-C). High-flux SERxns (reactions contributing to the top 10% flux values in at 
least one condition) were enriched in central and anabolic metabolism (Fig. S4C) 
(hypergeometric P < 0.01). However, a fraction of SERxns consistently demonstrated a 
low flux. These lower-flux SERxns are enriched in 'Cofactor and Prosthetic Group 
Biosynthesis', 'Lipopolysaccharide Biosynthesis/Recycling', and 'Cell Envelope 
Biosynthesis' pathways (hypergeometric P < 0.01). When comparing flux magnitudes of 
each pathway to the other 35 pathways, 'Cofactor and Prosthetic Group Biosynthesis' and 
'Lipopolysaccharide Biosynthesis / Recycling' pathways clearly carried low flux in all 
174 conditions (Fig. S4D). The genes associated with these pathways were also essential 
for growth (Fig. S6A). We note, however, that flux estimates for some cofactor 
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biosynthesis pathways might be lower than expected in vivo because they synthesize the 
few biomass components for which the synthesis rates are unknown and were thus 
previously provided low estimates (5). However, on average, specialist enzymes are 
selected for pathways that must maintain a higher flux to aid in the processing of 
nutrients to make the major biomass components. 
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Fig. S4. 
A detailed assessment of flux vs. specificity. (A) The assessment of flux vs. specificity 
was conducted using the median, average, and mode flux values for all reaction flux 
estimates on all 174 media conditions. The magnitude of flux for each reaction was rank 
ordered, with a rank of 1 being the smallest non-zero flux. On average, flux through 
SERxns was consistently higher than flux through GERxns. (B) P-values were computed 
against the null hypothesis that the flux through SERxns were not higher than the flux 
through GERxns for each of the 174 in silico media formulations using  the one-tailed t-
test. Each column of the heatmap represents the binned flux magnitudes for one of the 
174 carbon substrate conditions for SERxns (left) and GERxns (right). The color of each 
cell shows the percentage of reactions that are within the range of flux ranks. The blue 
circle represents the median rank of reactions in each media formulation. (C) SERxns 
also have a higher flux then GERxns catalyzed by multifunctional enzymes and enzymes 
exhibiting substrate promiscuity. Metabolic subsystems were identified that were 
enriched in the highest and lowest 10% of flux for SERxns. (D) The flux magnitudes 
were further analyzed for each metabolic subsystem across all 174 growth conditions. 
The heatmap depicts flux magnitudes between a subsystem of interest and the other 
pathways. Black cells show that the subsystem of interest has a lower flux magnitude 
than the other pathways, and white shows higher flux magnitudes than the other 
pathways. 

 

Enzyme kinetic parameters and specificity 
Using a curated set of kinetic parameters (23) derived from the BRENDA database, 

we assessed kinetic properties of enzyme specificity. We note that relatively few studies 
had both kcat and Km values in the curated kinetic parameters for E. coli. However, this is 
not too much of a concern because steady-state metabolic flux is more dependent on kcat 
values since many metabolites are found in concentrations near their Km values (65). 
Since the cells have managed to adjust their in vivo metabolite levels to their needed 
values, higher kcat values should be more important for higher flux reactions (consistent 
with the positive correlations between simulated flux and measured kcat; fig. S13C), while 
lower Km values should be more important for lower flux essential enzymes that need to 
avoid substrate competition. Since a recent study (23) suggests that there may be some of 
a trade-off between kcat values and Km values (i.e., turnover rate improvement may occur 
at the cost of substrate binding affinity), the Km values might also increase as high flux 
enzymes evolve to increase their turnover rate.  

As demonstrated in Fig. 1C and Fig. S4, many of the SERxns consistently 
demonstrated a much higher flux than most GERxns. We hypothesized that the the high 
flux would influence the evolutionary enhancement of enzyme activity in order to 
increase the turnover rate of the enzymes and thereby reduce the amount of required 
enzyme mass. Consistent with this hypothesis we found that the kcat values of the high 
flux SERxns (reactions with a rank greater than 900 in at least one growth condition) 
were significantly higher (Wilcoxon rank-sum P < 2.91 x 10-8) than the rest of SERxns 
(Fig. S5A). Moreover, the kcat values for these high-flux SERxns were also higher than 
those of all other enzymes (Wilcoxon rank-sum P < 2.84 x 10-7; Fig. S5C). Thus, these 
high-flux enzymes have possibly evolved to become specialists to allow the attainment of 
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more optimal kcat values. With this higher kcat, the enzyme concentration may decrease 
while maintaining the high flux, thereby decreasing the cost of the duplication event and 
possibly freeing up space for other enzymes that enhance growth. We note that while the 
Km values also increase (Fig. 5B,D), the magnitude of the median kcat values tends to 
increase more than the magnitude of the median Km value for these high-flux SERxns. 
The increased Km may result as a trade-off for achieving a higher kcat (23), but that this is 
likely not a concern since the kcat seems to increase more and the metabolite 
concentrations seem to compensate since they are often are near their associated enzyme 
Km values.  

Lower Km values for an enzyme suggests that the enzyme has a particularly higher 
affinity for the metabolite in question. A higher affinity may be beneficial to avoid 
substrate competition at an enzyme’s active site, which may be particularly important for 
enzymes that synthesize essential biomass components. While some essential enzymes 
maintain a higher flux, it is interesting to note that many of these are specialist enzymes 
that maintain a lower flux (compare figs. S4C and S6A). This is consistent with the 
observation that essential enzymes, on average, have slightly lower kcat values (Fig. S5E). 
However, consistent with the hypothesis that they might have significantly lower than 
average Km values to decrease the chance of substrate competition in the synthesis of the 
essential biomass precursors, we found the Km values for essential enzymes indeed tends 
to be lower than the remaining enzymes (one-sided Wilcoxon P < 1.13 x 10-11;Fig. S5F).  
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Fig. S5. 
Kinetic parameters of specialist and generalist enzymes in BRENDA. The distribution of 
kcat and Km values in high flux SERxns are compared against the values associated with 
(A-B) all other specialist enzymes and (C-D) all other enzymes in E. coli. The kcat values 
seem to increase more in magnitude than do Km values, which may just increase as a 
trade-off to attain higher kcat values. (E-F) Essential enzymes, which tend to have lower 
flux, also have slightly lower kcat values. However, they exhibit much lower Km values, 
which suggests that they may have evolved higher affinity for their substrates to avoid 
substrate competition.  
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Essentiality  
A number of enzymes are essential for the synthesis of several biomass precursors 

and other cell processes. Since these must be carefully regulated for growth, the 
associated enzymes may have evolved to become specialists to avoid substrate 
competition. Consistent with this, we found that specialist enzymes are more essential 
(Fig. 1D). Furthermore, many of the experimentally validated essential genes are found in 
low-flux pathways synthesizing essential cofactors, prostectic groups, and the cell 
envelope, or involved in tRNA charging (Fig. S6A). Most of these are ancient processes 
upon which other enzymes depend. 

To test if the model supports this hypothesis that enzyme specificity is associated 
with essential processes for growth, we used MCMC sampling to simulate growth. Since 
MCMC sampling provides a number of randomly selected feasible steady state flux 
distributions, these distributions can be used to test the dependencies between any given 
pair of reactions, i.e., a correlation coefficient can be computed to test if two reactions 
depend on each other.  

For the 174 sampled media conditions, the correlation coefficients between each 
reaction and the biomass reaction were computed. Reactions that significantly contribute 
to or are essential for growth are identified by having a significant P-value from the 
computation of the Pearson’s correlation coefficient. These correlated reactions represent 
the reactions for which there are no redundant pathways, and would therefore provide the 
most stringent selective pressures since they are the most essential reactions. 

Interestingly, as the P-value gets more significant, it is clear that GERxns are less 
frequently correlated with growth rate (Fig. S6B). In glucose minimal media, GERxns 
only account for 19% of the essential reactions with a correlation significance cutoff of P 
= 1x10-10 (see Fig. S6B, inset). This trend for few GERxns is seen for any reasonable 
correlation P-value cutoff (Fig. S6B,C). In like manner, within all 174 sampled media 
conditions, specialist enzymes are significantly enriched in the group of reactions that 
contribute most strongly with growth (Fig. S6D). SERxns account for 56% of all 
reactions with flux that correlates with the growth rate (Fig. S6D, inset), and this trend is 
seen in all growth conditions (Fig. S6E). Thus, since SERxns dominate the set of 
enzyme-catalyzed reactions necessary for optimal growth, it seems that the demand for 
biomass synthesis may exert a selective pressure that causes some enzymes to become 
specialists, while enzymes upon which growth is less dependent are under less pressure to 
specialize. 
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Fig. S6. 
Specificity and its association with in vivo and in silico essentiality. (A) The number of 
essential genes (measured in vivo) was determined for each metabolic subsystem in the 
iAF1260 reconstruction. (B) Far fewer GERxns fluxes are significantly correlated with 
growth (i.e., flux through the biomass objective) than expected for growth on glucose 
minimal medium. The distribution of SERxns, GERxns, and non-enzyme-catalyzed 
reactions with a P-value < 1x10-10 is shown (inset), and (C) this dominance of SERxns 
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among the essential reactions increases with increasing correlation between reaction flux 
and in silico-predicted biomass production. (D) For all 174 simulated growth conditions 
SERxns are significantly enriched among reactions showing a correlation with growth. 
The mean distribution for all 174 conditions is shown for reactions with a P-value < 
1x10-10 (inset), and (E) individual fractions are shown for all 174 media formulations.  

 

Reasoning why dynamic environments may select for enzyme specificity: serine 
hydroxymethyltransferase as a case study 

The cellular microenvironment is inherently dynamic. Metabolites can rapidly 
change concentration and some microbes see regular shifts in their environmental 
conditions (e.g., microbes in the gut), and can therefore change gene and protein 
expression in anticipation (66). When nutrients change in concentration, these changes 
directly affect the levels of metabolic flux throughout the metabolic network. If a flux 
needs to change, proper metabolic regulation can rapidly change the flux to avoid 
catalyzing undesirable reactions, and force the flux to adopt the needed steady-state flux 
distribution. Transcriptional regulation can also aid in adaptation. While these sorts of 
responses would be simple and allow the cell to easily control enzymes that catalyze one 
particular reaction, the combinatorial complexity significantly increases for generalist 
enzymes. Take, for example, serine hydroxymethyltransferase (GlyA), an enzyme that 
can catalyze a few reactions in E. coli. GlyA converts serine to glycine and transfers a 
methyl group to tetrahydrofolate. GlyA also catalyzes the hydrolysis of 5,10-
methenylTHF to 5-formylTHF (67), and reversibly cleaves 3-hydroxy amino acids, such 
as 3-phenylserine, threonine, and allothreonine, to form glycine and an aldehyde (68, 69). 
In the model, all five reactions that are catalyzed by GlyA can be used in the known 
metabolic network under most simulated growth conditions. If, for a hypothetical shift, 
the serine hydroxymethyltransferase and L-allo-threonine aldolase fluxes had to increase, 
stay the same or decrease, there would be nine qualitative flux states that could be 
assumed (Fig. S7A-B). This number rapidly expands when one accounts for all five of 
the reactions catalyzed by this enzyme in the iAF1260 model. Thus, the complex 
regulation for all of these reactions may pose a disadvantage if the fluxes do not often co-
vary (as seen for many reactions associated with generalist enzymes; see Fig. S10), 
especially if the reactions carry a high flux in many conditions. 

For GlyA in particular, there are five reactions included in the iAF1260 model that it 
is known to catalyze. While claims have been made that the serine 
hydroxymethyltransferase reaction may be the primary reaction that occurs in vivo (70), 
we note that all five can be used in most simulated growth conditions, i.e., all of the 
substrates are available, and so it is likely that GlyA will also catalyze all five reactions in 
vivo. The flux through the D-alanine transaminase, L-alanine transaminase, and threonine 
aldolase reactions significantly changes in 3.7%, 3.9%, and 10.0% of the simulated 
substrate shifts, respectively, and they have lower flux than average, ranking at the 40th, 
30th, and 47th percentile for flux among all active reactions, respectively. Meanwhile, 
serine hydroxymethyltransferase and L-allo-threonine aldolase change flux more 
frequently. Their flux changes in 58% and 37% of the simulated media shifts, 
respectively. In addition, they maintain much higher flux values, ranking at the 95th and 
85th percentiles. Thus given the explanation above, the serine hydroxymethyltransferase 
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and L-allo-threonine aldolase activities would be more sensitive to selective pressures for 
enzyme evolution because their flux frequently changes when the nutritional environment 
changes. In addition, they maintain a much higher flux on average than then other three 
enzymatic activities, and the flux between these two reactions does not co-vary more than 
randomly-selected reactions (P = 0.9).  

Interestingly, GlyA actually has an evolutionarily-related isozyme in E. coli, LtaE 
(Fig. S7C). GlyA shows a higher preference to catalyze the serine 
hydroxymethyltransferase reaction, while still weakly catalyzing the L-allo-threonine 
aldolase reaction. However, LtaE more efficiently catalyzes L-allo-threonine aldolase, 
and only has a weak serine hydroxymethyltransferase activity (70). Both of these 
isozymes, however, are still able to catalyze the other reactions that maintain a lower flux 
and are less subject to changing their flux when the nutritional environment changes. In 
addition, acetylation and succinylation sites have been found on GlyA, and many of these 
sites are near the serine hydroxymethyltransferase active site (18, 46, 47). Thus, while 
these enzymes have remained generalists through evolution, it seems that mutations have 
diversified the enzymes to control flux through the two reactions that will require more 
regulation. Since the enzymes have yet to abolish all other catalytic activities, the 
question remains as to if the current generalist functions of GlyA and LtaE represent a 
continuing evolutionary process or if the specificity they have achieved represents the 
upper limit due to structural needs at the active sites (70). However, it is clear that the 
partial divergence of these catalytic functions agrees with the findings of this work in 
which high flux and a need to change flux in dynamic nutritional environments tends to 
evolve enzymes away from being generalists. 

 

 
Fig. S7. 
Changes in flux in dynamic environments increases the complexity required to regulate 
flux on a generalist enzyme. (A) GlyA is a generalist enzyme. (B) In any given substrate 
shift, the flux through its two most prominent reactions can undergo nine qualitative 
changes (e.g, one reaction can increase in flux and the other can decrease). The complex 
regulatory mechanisms required to control this in any number of changes in the 
nutritional microenvironment around the cell may encourage gene duplication and 
specialization of the different copies. (C) Consistent with this idea, GlyA has an 
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evolutionarily-related isozyme, LtaE, that catalyzes the L-allo-threonine aldolase activity 
more efficiently, while GlyA is more efficient at catalyzing the serine 
hydroxymethyltransferase activity. 

 

Validity of predicted flux changes in this study 
Various studies have provided some support for predicted pathway usage from of 

Flux Balance Analysis (FBA) and related methods (14, 58). With the reliability of 
pathway usage established, the immediate following question is if differential gene 
expression can be predicted when E. coli is grown on two different growth conditions. 
While a recent published study seems to support this idea (14), we provide further 
support here.  

To address the question as to if experimental differential gene expression is 
consistent with model predictions, a method is presented here which is a slight variant on 
a previously published MCMC sampling-based method (37, 45). The approach presented 
here extends the published method by associating reaction flux with gene expression 
change. Herein we call this method Flux Space Shift analysis (FSS). FSS utilizes MCMC 
sampling of the metabolic solution space to compute the distribution of all possible 
steady-state fluxes an enzymatic reaction can carry in a cell in a given growth condition.  

The aim of constraint-based modeling is to define a space of possible phenotypes by 
adding a series of known biologically-relevant governing constraints (7). Assuming the 
constraints are accurate, the true steady state flux through the network should be within 
the in silico solution space (Fig. S8A). The range and distribution of reaction fluxes 
within these solution spaces are dependent on the constraints, such as reaction 
thermodynamics, metabolite uptake rates, etc. Therefore, the space is condition-specific, 
i.e., the various dimensions of the space might move when the model is simulated under 
two different growth conditions. Specifically, as shown in Fig. S8B, the flux may be 
significantly higher in the second growth condition (reaction 2), significantly lower 
(reaction 1), or show no significant change between the two growth conditions (reaction 
3). Thus, for each reaction, a P-value can be assigned to measure the difference between 
the distributions of fluxes for the two growth conditions.  

Since properly constrained reactions do not demonstrate uniform distributions of 
feasible steady-state fluxes, the distribution is determined by using MCMC sampling of 
the solution space. To do this, a large number of samples within the solution space are 
randomly moved until they are well mixed, thereby sampling the entire solution space 
(see (42) for a more detailed description). This sampling process yields a distribution of 
feasible steady-state fluxes for each reaction. This process is then repeated for the second 
growth condition. For each reaction, a P-value is computed from the distributions of 
possible fluxes for the reaction under the two conditions. This P-value represents the 
probability of choosing a flux value from a reaction in condition 1 that is also within the 
distribution for that reaction under condition 2. The P-values are then corrected for 
multiple hypotheses, and the list of reactions that show significantly different fluxes for 
the two conditions is returned, along with the direction of the change in magnitude. All 
significantly changed fluxes are then decomposed into a list of genes that help to catalyze 
the reactions using the gene-protein-reaction associations in the model. Through this, one 
can obtain lists of genes that are expected to be up-regulated or down-regulated (genes 
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that are associated both with reactions that increase and other reactions that decrease are 
removed from the analysis since the kinetics for the different reactions are often not 
known). 

While it may seem unreasonable for such a high level of tuned condition-specific 
gene expression to occur for a large number of gene expression states, it is hypothesized 
that if the flux through a network is predicted to increase (or decrease) in magnitude, that 
the expression level and/or abundance of active enzyme will increase (or decrease) to 
meet the change in flux. These model-predicted up- and down-regulated genes can be 
compared to gene and protein expression data for different growth conditions. 

This process was conducted for growth conditions used in this study and compared 
to the new and previously-published experimental data. Specifically, to assess the 
accuracy for different nutritional shifts, FSS was tested on changes in carbon source and 
electron acceptor source in M9 minimal media (Fig. S8D-E). In the models, many genes 
are predicted to change their expression level in each shift, and these changes are growth-
condition specific; therefore, one might not expect that there should be significant 
agreement between the model predictions and data from a short time following the shift, 
since it would require highly specific regulatory mechanisms. Surprisingly, there was 
significant agreement for the tested environmental conditions (in which only one 
nutritional component was changed). There is a significant overlap between model-
predicted up- (down-) regulated genes, and the actual up- (down-) regulation seen in the 
microarrays (Fig. S8D-E) and semi-quantitative proteomic data (unpublished).  
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Fig. S8. 
Model-predicted differential gene expression of metabolic genes is consistent with 
measured gene expression changes for various shifts in growth condition. (A) Constraint-
based modeling employs governing constraints to define a space of possible phenotypes 
(represented by feasible steady-state fluxes for each reaction). (B) When growth 
conditions change (e.g., a change in carbon source, or aerobicity), the space of feasible 
fluxes can change, as is reflected in the computed flux levels shown here for reactions 1 
and 2 (C). These changes are subsequently mapped back to the genes and proteins 
associated with these reactions to predict differential gene and protein expression. (D) 
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The prediction of gene expression changes from changes in flux was tested against 
microarray data for different changes in carbon source, and (E) changes in electron 
acceptor (i.e., oxygen and nitrate). All of these demonstrated significant agreement 
between model predictions and the actual direction of expression change (i.e., up/down 
regulation) from the microarray data (red) when compared to randomized expression 
change.  

 
 

  



 
 

27 
 

A comparison of shifts between structurally similar carbon substrates 
When the differences between changes in SERxns and GERxns were assessed for all 

15,051 media shifts, a change-difference parameter, termed CD here, was computed to 
assess if SERxn or GERxn changes dominated. The CD was computed as: 

 

flux with GERxns of #
changing GERxns of #

flux with SERxns of #
changing SERxns of #

−=CD
 

 
The CD parameter exhibits a bimodal distribution, in which the environmental shifts 

causing more than 8% of the model reactions to change demonstrated a more dramatic 
difference between SERxns and GERxns (Fig. S9). Shifts showing a weaker preference 
to change SERxns (lower CD) tended to have fewer than 8% of the enzyme-catalyzed 
reactions actually changing.  

To test if this is due in part to structural similarity of the limiting metabolites in the 
media, pairwise Tanimoto coefficients were computed for 154 of the 174 consumable 
carbon substrates in the E. coli iAF1260 model. The remaining 20 metabolites did not 
have appropriate identifiers to unambiguously identify a metabolite structure. Pairwise 
Tanimoto coefficients were calculated using the software tool Pipeline Pilot (Accelrys 
Software Inc.: http://www.accelrys.com/) with the FCFP_6 fingerprint descriptor. When 
Tanimoto coefficients were compared with the CD values, there was a significant 
negative correlation (Spearman rank correlation, P < 1x10-307). Thus, while almost all 
shifts show that SERxn flux is more sensitive to nutritional shifts, the shifts that show a 
weaker preference toward changing SERxn flux are due to the fact that the main carbon 
substrates are structurally similar and therefore cause few flux changes throughout the 
network. 

 

 
Fig. S9. 
Flux through specialist enzymes changes more than flux through generalist enzymes.  
The difference between the fraction of SERxns that change flux and the fraction of 
GERxns that change was computed for each media shift. The distribution for all 
conditions exhibited a bimodal characteristic. When condition shifts that change fewer 
than 8% of the enzyme-catalyzed reactions in the metabolic network are removed (blue), 
almost all condition shifts show a dominance of SERxns changing (red).  CD = change-
difference parameter. 
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Flux through reactions using the same generalist enzyme is often concerted 
Flux through generalist enzymes tends to be less sensitive to environmental changes 

and subject to less metabolic regulation. However, when the fluxes through GERxns 
change, do the fluxes catalyzed by the same enzyme co-vary under nutritional 
environment shifts? Such a scenario would require less complex regulation since the flux 
for reactions sharing an enzyme would change together for most or all nutritional shifts. 
To assess this, a cosine similarity metric was used to quantify the amount of co-variance 
between fluxes through generalist enzymes. For example, for an enzyme e1 that catalyzes 
three reactions (r1, r2, and r3), the flux similarity score of e1 is calculated as an average 
value of cosine distances of three reaction pairs (Fig. S10A). This metric is applied to 
15,051 carbon shift conditions. In each shift condition, the median value of averaged 
similarity scores of generalist enzymes are evaluated. For the control experiment, cosine 
similarity scores of the random number of reactions that correspond to the generalist’s 
catalytic degree are used as a control distribution. This metric demonstrates that the 
individual reactions catalyzed by the same generalist enzyme tend to be regulated in same 
direction (i.e., the magnitude of their flux either increases or decreases together), more so 
than seen for randomly chosen pairs of reactions (Fig. S10B). This suggests that 
generalist enzymes may not require more complex regulation to balance conflicting 
changes in flux between multiple reactions. 

 

 
 

Fig. S10. 
Similarity scores for flux changes suggest that generalist enzyme flux often co-varies.  
(A) An example of calculating the similarity score of a generalist enzyme is provided. (B) 
Across the 15,051 media shifts, reactions associated with the same generalist enzyme 
(yellow) tend to change flux in the same direction more frequently than randomly 
selected reactions (gray), as reflected by a higher similarity score. 

 

Enrichment of metabolic regulation on specialist enzymes 
An increased role for metabolic regulation may be necessary for enzymes that are 

more sensitive to  fluctuations in the nutritional environment. Thus, is there evidence for 
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increased metabolic regulation on specialist enzymes? Metabolic regulation in microbes 
involves the modulation of enzyme activity under different stimuli, and is often mediated 
by allosteric binding of small molecules or post-translational enzyme modification (18, 
19). Thus, to quantify the level of metabolic regulation, the abundance of known 
allosteric regulatory interactions and enzyme PTMs associated with specialist and 
generalist enzymes was assessed. Specifically, genes associated with small molecule 
mediated activation/inhibition were identified from EcoCyc (35). Of these, 64 were 
known to undergo allosteric, uncompetitive, or noncompetitive regulation, and these were 
enriched in SERxns (P = 9x10-4). To complement this, enzymes with PTMs were 
identified from several proteomic data sets assessing phosphorylation (48), acetylation 
(46, 47), and succinylation (18). Consistent with small-molecule-mediated regulation, 
specialist enzymes are more frequently post-translationally modified (P = 5x10-3), and 
enzymes associated with reactions that more frequently change flux in more dynamic 
environments tend to also have more PTMs associated with them (Fig. 3D).  

When compared to the clusters reported in Fig. 3A, regulated enzymes were 
particularly enriched within the cluster of enzymes associated with reactions that most 
frequently change flux (dominated by specialist enzymes), while small molecule-
mediated regulation and PTMs were depleted from the cluster in which reactions rarely 
changed flux (dominated by generalist enzymes) (Fig. S11). Only enzymes with known 
competitive inhibitors did not show a significant preference for any one cluster, which is 
not surprising. Unlike other modes of regulation, competitive inhibition mostly 
temporarily slows the reaction rate until the natural substrate concentration increases to 
counter-balance the inhibition. Thus it is less expected that competitive mechanisms 
would be employed in nutritional shifts where regulatory mechanisms need to change 
reaction flux to a new steady state level. Thus, competitive mechanisms may not be 
selected for on specialist enzymes, since they seem to evolve due to a need to control flux 
levels under dynamic nutritional conditions. 
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Fig. S11. 
Post-translational modifications and metabolite-mediated allosteric regulation are 
enriched among reactions that are predicted to change more frequently. Specifically, 
three main clusters of reactions appear in a binary matrix that details which reactions 
change flux in each of 15,051 media shifts. A modified rose plot shows the enrichment of 
regulatory mechanisms in these three clusters. In this plot, enrichment P-values are 
plotted in the outer ring, and depletion P-values are plotted in the inner ring, with the 
grey band in the middle representing P-values greater than 0.05. In this plot it is clear to 
see that allosteric regulation and PTMs are enriched in cluster 1, while cluster 3 is 
depleted in these modes of regulation. It is also clear that small-molecule-mediated 
competitive regulation is not enriched in any cluster, which is not surprising since this 
mode of regulation would be less effective in substrate shift conditions. 

 

Network properties associated with enzyme specificity are conserved across micobes 
The properties of network context discussed in this work show how enzyme 

specificity correlates with the holistic functions of the E. coli metabolic network. 
However, if these properties influence selection of enzyme specificity in protein 
evolution, one may expect the properties to be conserved. Thus, we examined 
conservation of these properties using genome-scale metabolic models of microbes from 
the other domains of life: the archeon Methanosarcina barkeri (20), and the eukaryotes 
Saccharomyces cerevisiae (21) and Chlamydomonas reinhardtii (22). Similar to E. coli, 
the three organisms contain numerous generalist enzymes, ranging from 25%-45% of the 
known metabolic enzymes in these organisms (Fig. S12). Common growth conditions 
were simulated for each organism using MCMC sampling to estimate metabolic flux. The 
median flux value for each reaction was obtained and these were ranked to compare the 
relative flux levels for specialist and generalist enzymes. In each organism, specialist 
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enzymes maintained a higher flux on average than generalist enzymes. We further 
simulated environmental shifts for each organism and found that generalist enzymes were 
less likely to change flux between growth conditions for most conditions. The only shifts 
for which differences were not seen were for shifts between highly similar substrates 
(e.g., shift from maltose to glucose in S. cerevisiae). Thus, through the diversification of 
microbes, higher flux and a need for regulation in varying environments remain as 
general features of specialist enzymes. 

 

 
Fig. S12. 
Enzyme-specificity characteristics hold for microbes in all domains of life, as shown here 
for (A) M. barkeri, (B) C. reinhardtii, and (C) S. cerevisiae. Generalist enzymes are 
abundant, as shown by the gene, enzyme, and reaction (G/E/R) composition for each 
species. In addition, SERxns maintain higher magnitudes of flux than do GERxns. The 
shift plots also show that a higher fraction of SERxns change flux levels in shifts between 
two different growth conditions. 
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Correlation of flux vs. gene expression, protein concentration, and enzyme efficiency 
Metabolic flux is determined by a number of factors (e.g., transcription and 

translation rates, metabolic regulation, kinetic properties of enzymes, etc.). Therefore, it 
should not necessarily correlate well with any one factor on its own. However, we 
assessed how flux values from our model predictions correlate with measured data to 
gain insight into how each of the various properties may influence flux, and also to 
provide some confidence in our simulated flux rankings. Specifically, we evaluated 
model predicted flux values with respect to transcript levels, enzyme concentration and 
enzyme kinetic parameters. The data we used included 42 previously published 
microarrays (32, 38), quantitative protein abundance data (71), and kcat values obtained 
from BRENDA. The median values of gene expression and protein abundance 
measurements for each mRNA/protein were compared to the rank-ordered flux, as were 
the kcat values. For each of these, we found a correlation between the parameters and flux. 
Consistent with the idea that kcat values and mRNA/protein levels contribute directly to 
flux, we saw the most significant correlation of these parameters with the predicted flux 
(Fig. S13A-C, Spearman correlation coefficient: 0.383, 0.411, and 0.381 respectively).  

 
Fig. S13. 
Comparisons were made between model-predicted flux and various types of experimental 
data, such as (A) microarray data, (B) protein concentration, and (C)  kcat. values.  
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Substrate/product-mediated regulation of enzymes 
Here we provide a more detailed assessment of cases when enzymes are regulated 

by their own substrates. It has been previously suggested that this might be important to 
prevent an active site from catalyzing undesirable promiscuous reactions (2). The only 
case of regulation that would seem to facilitate this is that of allosteric activation. 
However, in E. coli there are few cases of substrate-mediated allosteric activation (Fig. 
S14). These include the specialist enzymes GltA (b0720), AnsA (b1767), and  RffE 
(b3786), which are regulated by their substrates Acetyl-CoA, L-Asparagine, and UDP-N-
acetyl-D-glucosamine, respectively. The only known generalist enzyme that is activated 
by its substrate, ‘pyruvate formate lyase I (PflB)’ is positively regulated by one of its 
substrates, pyruvate. Interestingly, this regulation is indirect. Pyruvate binds to PflA, 
which then activates PflB’s anaerobic pyruvate cleavage activity. Further discussion of 
this enzyme can be found below.  

 
Fig. S14. 
The Number of enzymes that are regulated by their own substrates or products in 
allosteric activation. Spec.: Specialist, Gen: Generalist.  
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Isoenzymes in generalist enzymes 
Since gene duplication is a common component in models of enzyme evolution (3), 

is there evidence of greater catalytic redundancy among generalist enzymes? Here we 
provide an initial analysis of isoenzymes and their relation to enzyme specificity. In the 
E. coli model, 1,045 reactions are catalyzed a single enzyme, while 270 reactions have 
known isoenzymes (Fig. S15A). In E. coli we found that reactions catalyzed by multiple 
isoenzymes are more likely to be catalyzed by generalist enzymes than expected by 
chance (binomial P = 6.4 x 10-8). We looked into the flux magnitudes of reactions 
catalyzed by multiple generalist enzymes and found that they exhibited a bimodal 
distribution of flux levels (Fig. S15B). Furthermore, many of the GERxns that maintain 
higher flux levels could be catalyzed by more than one enzyme. These higher flux 
generalist enzymes include important biosynthetic pathways that need to synthesize 
components of the cell envelope and membrane (hypergeometric P=4x10-4 and P=3x10-12 
, respectively), which are needed in bulk quantities as cells grow. In addition, enzymes 
needed to recycle and modify nucleotides were also enriched (hypergeometric P=7x10-8). 
Both of these processes benefit from being able to do similar reaction chemistries on a 
variety of substrates. In addition, the isoenzymes have overlapping substrate specificities, 
such as seen for FabA and FabZ, which are both beta-hydroxyacyl-ACP dehydratases 
required for cell envelope synthesis. While their specificities significantly overlap, FabA 
is more highly active on intermediate length β-hydroxyacyl-ACPs, while FabZ has a 
preference for short and long chain β-hydroxyacyl-ACPs. FabA can also use short and 
long chain β-hydroxyacyl-ACPs, but only the saturated forms (72). It is anticipated that 
having generalist isoenzymes such as these provide a fitness advantage since they can act 
on a broad range of substrates to synthesize a diverse range of structural components for 
the cell, and the presence of different isozymes provides additional diversity to molecules 
that are synthesized.  

Among the high flux GERxns that can be catalyzed by isoenzymes, we found a few 
additional proteins of interest. For example, pyruvate formate lyase (PflB) is an important 
enzyme in glucose metabolism under anaerobic conditions, and a homologous isozyme 
has been found (TdcE). PflB is known to catalyze the non-oxidative cleavage of pyruvate 
to make formate and acetyl-CoA (73). Under anaerobic conditions, it is the primary 
enzyme that produces acetyl-CoA from pyruvate, since pyruvate dehydrogenase is 
inactive under anaerobic conditions. PflA is an activase that is necessary for PflB 
activity, and pyruvate allosterically activates PflA (74). It is believed that pyruvate 
cleavage is the primary function of PlfB, and this enzyme maintains a high flux in 
anaerobic conditions in our model (97th percentile), which significantly decreases when 
grown aerobically or with nitrate. In addition to the cleavage of pyruvate, PflB has a 
secondary metabolic function in which it catalyzes the cleavage of  2-ketobutyrate to 
make propionyl-CoA and formate, which is one step in L-threonine metabolism (75).  

However, a homolog to pflB has been discovered. The TdcE enzyme has 82% 
homology in protein sequence to PflB. As seen with PflB, TdcE is also expressed 
anaerobically. However, initial studies suggested that its pyruvate formate lyase activity 
is lower than that seen by PflB, while it has a greater preference for the cleavage of 2-
ketobutyrate (75). It is believed that the physiological role of this enzyme is the anaerobic 
degradation of L-threonine. However, the flux for this enzyme ranks in the 18th percentile 
under anaerobic conditions. 
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A few questions arise when one assesses the generalist PflB and TdcE isozymes. 
Both of the enzyme activities seem to have important physiological roles under anaerobic 
conditions. While they have both evolved greater specificity for their substrate of interest, 
they both can replace each other’s activity to some extent (73, 75). Do they maintain their 
generalist properties because they cannot evolve greater specificity? Or are they in the 
process of diverging, but are doing so more slowly since the 2-ketobutyrate cleavage 
activity is under a weaker selective pressure since the reaction is lower flux? Similar 
hypotheses exist for other generalist isozyme pairs (e.g., GlyA and LtaE). Further 
detailed study and experimentation (e.g., using directed evolution) is required to test 
these hypotheses. 

 
Fig. S15. 
(A) Isozymes contribute to a sizable number of reactions and are more prevalent among 
GERxns in E. coli metabolism. (B) The rankings of isozyme-related GERxn flux showed 
a bimodal distribution of flux values, including an enrichment high-flux GERxns 
associated with several metabolic subsystems.  
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Assessment of nitrate uptake rate 
The range of feasible nitrate uptake rates was approximated from the iAF1260 

model of E. coli by constraining the model growth rate and glucose uptake rate to the 
measured values (0.34 0.007 h-1, and 4.05 0.5 mmol gDW-1 h-1, respectively). Once the 
model is constrained with the measured growth rate and the glucose uptake rate, the 
feasible nitrate uptake range was determined by Flux Variability Analysis (FVA) (76). 
Within the given feasible range, we used uptake rates in the range of 25th, 50th, and 75th 
percentile, and compared the qualitative difference between specialist and generalist 
enzymes in the nitrate-anaerobic shift. However, results presented in Fig. 2A were 
qualitatively robust with variations in nitrate uptake rate within the computed range (Fig. 
S16). 

 

 
Fig. S16. 
Qualitative properties of specialist and generalist enzymes were robust to variations in 
estimated values of nitrate metabolism. Due to the difficulty of measuring the rate of 
nitrate metabolism, the uptake rate was computed from the model by using 
experimentally-measured glucose uptake rates and growth rates. This calculation 
provided a range of feasible nitrate metabolic rates. Across this range, SERxns change 
flux more frequently. Thus, this result is qualitatively robust, within the range of feasible 
nitrate uptake rates (between approximately 15-25 mmol gDW-1 h-1). 

 
 

Details of the classification of specialist and generalist enzymes 
For this study we classified 1,147 enzymes from the E. coli genome-scale model 

(iAF1260) (5) following the detailed process shown in Fig. S17. First, we identified 
1,081 proteins with enzymatic activity, as reported in the EcoCyc Database (35). The 66 
proteins that were removed did not have experimentally-validated catalytic activities. 
These included non-catalytic members of enzyme complexes (e.g., the electron 
transferring protein flavodoxin (b0684)) and predicted enzymes (e.g., predicted 
carbamate kinase (b0521)). Among these 1,081 enzymes, 677 enzymes were classified as 
specialists, which only catalyze one specific chemical reaction on a single set of 
substrates. The 404 enzymes catalyzing more than one reaction were classified as 
generalist enzymes (Fig. S17A). These specialists and generalist enzymes are encoded by 
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720 genes and 473 genes, respectively. We anticipate that a small fraction of enzymes 
may be misclassified due to incomplete study of some enzymes or incorrect interpretation 
of biochemical studies. However, these concerns should not substantially affect the 
conclusions in this work, since variations on the categorization yield qualitatively similar 
results (see Fig. S3).  

Generalist enzymes were further curated to verify that they indeed were associated 
with reactions on multiple substrates. These were also partitioned into subclasses 
according to if they were multifunctional or enzymes that exhibit substrate promiscuity.  

Following enzyme classification, specialist enzyme reactions (SERxns) and 
generalist enzyme reactions (GERxns) were identified and classified (Fig. S17B). The 
reaction lists were also filtered to remove reactions with ambiguous classification. 
Specifically, 67 reactions associated with both of specialist and generalist isozymes were 
removed from the further analysis. We also note that transport reactions were removed as 
they usually do not represent canonical metabolic catalysis beyond, for example, ATP 
hydrolysis for in ABC transporters. However, the presence of transporters did not 
qualitatively change the results in this work (Fig. S3).  

 

 
 

Fig. S17. 
The specialist/generalist classification process employed in this study. (A) Enzymes and 
and their associated genes were classified based on the number of enzymatic reactions 
they catalyzed in the iAF1260 metabolic network reconstruction. (B) Reactions 
associated with specialist and generalist enzymes were similarly classified.  
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Justification of combining promiscuous and multifunctional enzymes into the 
“generalist” class 

The evolution of enzyme specificity and gene duplication has been a topic of great 
interest for decades (3, 77, 78). In 1976, Roy A. Jensen published an important treatise on 
enzyme evolution (1). This seminal work included insights and theories that have since 
deeply influenced decades of research into the evolution of metabolic pathways and 
enzyme specificity. A key tenet of Jensen’s work was that ancestral enzymes 
demonstrated broad specificity. Specifically, he stated that  

"Pristine life must have been restricted to limited genetic information encoding a 
small number of proteins. . . . The most attractive mechanism for acquisition of additional 
genetic information is that of gene duplication in tandem. Divergence of the new gene 
copies via mutational modifications that altered enzymatic reactivities presumably 
allowed the expansion of metabolic capabilities and the evolution of new biochemical 
pathways.... Subsequent elaboration of additional enzyme proteins following gene 
amplification would allow the luxury of increased specialization and the improved 
metabolic efficiency that is thus permitted." 

Jensen then raised an important point briefly: "Although modern enzymes can be 
extraordinarily specific, substrate specificities are perhaps broader than is generally 
appreciated." Despite this observation, biochemistry textbooks still define enzymes as 
“specific catalysts”.   

While Jensen referred primarily to cases in which enzymes exhibit substrate 
promiscuity, the combination of these enzymes with multifunctional enzymes is relevant 
because the selection pressures that influence the evolution of broad-specificity enzymes 
to toward high specificity will also influence the many multifunctional proteins, causing 
them to duplicate and evolve to having only one active site with any notable activity.  

To demonstrate that these two groups are likely subject to the same selective 
pressures, we classified each generalist enzyme as promiscuous or multifunctional. In this 
classification, among the non-transporter generalist enzymes, we found that 89% are 
generalist enzymes exhibiting substrate promiscuity (such as those envisioned by Jensen), 
and 11% are multifunctional (Fig. S1A). Furthermore, 3% were multifunctional with one 
or more promiscuous active sites. Lastly, 2% were bifunctional enzymes in which the 
different catalytic activities were used exclusively to catalyze two reactions in series on 
one substrate (e.g., in substrate channeling).  

To show that the selective pressures are likely relevant to multifunctional enzymes 
and enzymes showing substrate promiscuity, the central tests of this work were repeated 
on both of these groups of enzymes. Through this analysis we found that flux for both 
classes of enzymes was lower (Fig. S4C) and less sensitive to nutritional changes (Fig. 
S3B). Thus it seems that the selective pressures highlighted in this work are relevant to 
enzymes with substrate promiscuity and also to multifunctional enzymes. 
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Table S1.  
Experimentally measured growth phenotypes with and without nitrate. 

 

 Growth rate  
(h-1) 

Glucose uptake 
rate  
(mmol gDW-1 h-1) 

Acetate secretion 
rate  
(mmol gDW-1 h-1) 

Formate 
secretion rate 
(mmol gDW-1 h-1) 

Anaerobic 
with nitrate 

0.34 ± 0.007 4.05 ± 0.504 6.99 ± 0.33 5.22 ± 0.15 

Anaerobic 
without 
nitrate 

0.29 ± 0.007 5.79 ± 0.44 4.64 ± 0.31 14.15 ± 0.53 

 
 
 

Table S2.   
Number of GERxns in each classification. 
 

Number of 
reactions 

Glycerol vs. 
Glucose 

Propylene 
glycol vs. 
glycerol 

Anaerobic vs. 
Aerobic 

Anaerobic vs. 
anaerobic + 
nitrate 

GERxns 830 828 830 837 

Conditional 
GERxns (type I) 

700 708 700 707 

GERxns without 
Transporters 

660 663 660 665 

 
 

Database S1.  
The excel file includes full list of specialist and generalist enzymes and their associated 
reactions. (A) E. coli enzyme table : column1 - enzyme abbreviation, column2 - enzyme 
full name, column3 - associated genes, column4 - associated reactions, column5 - 
enzyme class, column6 - enzyme subclass, column7 - associated EC number, column8 - 
comments. (B) E. coli reaction table: column1 - reaction abbreviation, column2 - reaction 
full name, column3 - reaction formula, column4 - subsystems, column5 - associated 
genes, column6 - reaction class. (C), (D), and (F) depict column1 - list of specialist gene, 
column2 - list of generalist genes, column3 - list of SERxns, column4 - list of GERxns of 
M. barkeri, C. reinhardtii, and S. cerevisiae, respectively. 
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