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A moving-boundary computation was developed for the nonsta-
tionary astrocyte–ECS boundary, resulting from water flux. The 
computation used newly added mesh elements, requiring conser-
vation of K+ (and non-K+) solutes. After computation of water flux 
(JV) and the incremental astrocyte volume, new mesh elements at 
high density were added at the expanded boundary (Fig. S1). K+ 
entering the astrocyte (from flux, JK

a) was added in a “buffer” 
(well-stirred) region as indicated.

[K+]a and [non-K+]a in the buffer region were computed as,

	
[ ] ( ) [ ] ( ) /(K t K t t J length	of	buffer	region)a a K

a+ ++ = −t ∆ ∆  	 (S5)

	 [ ]( ) [ ] ( ),non-K t t non-K ta
+ ++ =∆ 	 (S6)

where [K+]a(t) = 0 and [non-K+]a(t) = 0 in the newly added mesh 
elements and JK

a has minus sign for K+ flux from ECS to astrocyte.
The length of buffer region used in computations was 0.2 µm. 

Fig. S2 shows astrocyte K+ conservation in the computations, as 
well as little effect of buffer region length on [K+]e, [K+]a buildup 
near the plasma membrane, and the kinetics of de.

After application of the flux boundary condition at the astrocyte 
membrane, diffusion inside the astrocyte was solved for a Neu-
mann boundary condition (zero flux boundary condition) at the 
plasma membrane and at the opposite membrane.

Validation of solution of the diffusion equation
The numerical method for solution of the diffusion equation 
(ut = Duxx), which was validated by comparison with the analyti-
cal solution for a step-function initial condition, is u(x,0) = 0 	
(x < 0), 1 (x > 0),

	 u x t erf x Dt( , ) . ( [ /( ) ])./= +0 5 1 4 1 2 	 (S7)

Fig. S3 shows agreement between the analytical solution and nu-
merical solution at different times (Dt = 0.1, 1, and 10).

Table S1 provides the discretized equivalents of the differential 
and integration equations used in the model formulation 	
(Table 1).

Discretization method
The diffusion equation was solved numerically by the Crank-
Nicolson method using spatial discretization (second-order cen-
tral difference scheme). Diffusion in astrocyte cytoplasm was 
computed using the one-dimensional diffusion equation,

	
dc
dt

d
dx

D
dc
dx

dD
dx

dc
dx

D
d c
dx

= 





 = +

2

2 , 	 (S1)

where D is diffusion coefficient, c is the concentration of K+ or 
non-K+ solutes, and x is the location in the astrocyte. Eq. S1 	
was discretized as follows using the second-order Crank-	
Nicolson method,

	c c

t

dD

dx

dc

dx
D

d c

dx

dD

dx

dc

dx
D

d c

dx

n n n n n n n n+ + + +
−

= + + +
1 1 1 2

2

1 2

2

1

2∆ 





















+
+ + +

− + = +c
t dD

dx

dc

dx
D

d c

dx
c

t dDn
n n n

n1
1 1 2

2

1

2 2

∆ ∆

ddx

dc

dx
D

d c

dx

n n n

+












2

2
.

	
(S2)

	
	

A nonuniform spatial discretization scheme for first and second 
derivative terms was used,
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where Hi = hi + hi+1, hi = xi - xi-1. Finally, Eq. S1 was discretized as a tri-
diagonal system (see last section of supplemental material for de-
tailed procedure),

Figure S1.  Schematic of buffer region and newly added mesh 	
elements for computation of diffusion in astrocyte cytoplasm with 
a moving astrocyte–ECS boundary.
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and (  1)Jpump, respectively, to give zero K+ flux before neuro-
excitation. Electroneutral K+ flux was described as follows, with 
activity (  1) Jpump under resting conditions.

	
J J K t K t K KNT pump e a e a= − − −+ + + +( ) { [ ] ( ) [ ] ( )} / { [ ] ( ) [ ] ( )}.γ γ γ1 0 02 2 	

(S11)

Parameters were:  = 3, to give relative activities of 1:3:2 by the 
K+ pump, channel, and neutral transporter, respectively; and 	
2 = 3.4 to give comparable conductive and electroneutral K+ flux 
just after neuroexcitation. As shown in Fig. S6, the main conclu-
sion, that there is little qualitative effect on computed results with 
inclusion of electroneutral transport, was robust and not affected 
by the exact choice of .

Robustness of the K+/Cl coupling ratio
In Eqs. 9–11 (Table 1), a factor of 2 was included to describe elec-
troneutrality for conductive K+ transport, implicitly assuming Cl 
countertransport. This value is reasonable, though not rigorous, 
because both Na+ and Cl transport can occur. In Fig. S7, we per-
formed computations to show that the major conclusions are ro-
bust and not dependent on the precise factor of 2 used, as factors 
of 1.5 and 3 gave qualitatively similar results.

Alternative model variations
Alternative model variations were considered as shown schemati-
cally in Fig. S4. Fig. S5 shows computations done for indicated con-
ditions for the well-mixed and diffusion-limited models (for Da = 
108 cm2/s) for each condition, as compared with those for the 
standard model reported in the main text.

The first variation involved a large astrocyte volume (da = 
100 µm). There was little difference in computations from 
those with da = 10 µm (compare Fig. S5, A and B).

The second alternative variation of model involved nonuniform 
ECS geometry, with two thicknesses, de1 and de2, with  as the frac-
tion with thickness de1.

Parameters were chosen as de1 = 1 µm, de2 = 3 µm, and  = 0.5. 
The ECS was considered to be a well-mixed region because of its 
small size and high diffusion coefficient (>106 cm2/s). Because 
water and the K+ flux are the same in regions 1 and 2, the new ECS 
volumes were calculated as

	
d t t d t t J t 	d t t d t t J te e V e e V1 1 2 2( ) ( ) ( ), ( ) ( ) ( ),+ = + + = +∆ ∆ ∆ ∆ 

	
(S8)

where JV(t) is negative for water fluxes from ECS to astrocyte. 
[K+]de1 and [K+]de2 in the two regions in the ECS were calcu-
lated as,

	[ ] ( ) [ ] ( ) ( )/ ( ) / (K t t K t d t d t t t J d t tde de de e1 K
a

de
+ ++ = + + +1 1 1 1∆ ∆ ∆ ∆ ));

[ ] ( ) [ ] ( ) ( )/ ( ) / (K t t K t d t d t t t J d tde de de e2 K
a

de
+ ++ = + +2 2 2 2∆ ∆ ∆  ++ ∆t). 	

(S9)

[K+]e was then taken as a weighted average in the well-mixed ECS,

	[ ] ( ) {[ ] ( ) ( ) [ ] ( ) (K t t K t t d t t K t t d te de e de e
+ + ++ = + + + + +∆ ∆ ∆ ∆ ∆1 1 2 2  tt

d t t d t te e

)} /

{ ( ) ( )}.1 2+ + +∆ ∆ 	
(S10)

Fig. S5 C shows that inclusion of a nonuniform ECS has little 
effect on model computations, because [K+]e is averaged in well-
mixed ECS.

As a final alternative variation of model, electroneutral (mem-
brane potential–independent) K+ transport, corresponding to 
NKCC and KCC transporters, was considered. The activity of the 
K+ pump, channel, and neutral transporter were Jpump, Jpump, 

Figure S2.  Examination of astrocyte 
K+ concentration. (A) Conservation of 
total K+ after neuroexcitation. Parame-
ters: de = 2 µm, PK = 1.2 × 105 cm/s, 
JK

n
o = 108 mol/cm2/s, and Pf = 0.1 cm/

s for the indicated buffer region thick-
ness. For the same parameter set, 
shown are time course of [K+]e (B), K+ 
buildup in astrocyte cytoplasm (C), 
and de (D).

Figure S3.  Agreement between numerical and analytical solu-
tions to the diffusion equation for step-function initial condition.
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Figure S4.  Schematic of model variations tested. (A) Standard model conditions. (B) Large astrocyte (thickness 100 µm). (C) Non-uni-
form ECS geometry.

Figure S5.  Predictions of alternative model variations. (A) Computations from Figs. 3 F and 5 C of the main text. (B) Expanded astro-
cyte cytoplasm modeled for da = 100 µm. Parameters: PK = 1.3 × 105 cm/s, JK

n
o = 8 × 1010 mol/cm2/s, and tn = 10 s, with the indicated 

Pf. (C) Non-uniform ECS thickness (de =1 and 3 µm), with PK = 1.3 × 105 cm/s, JK
n

o = 8 × 1010 mol/cm2/s, and tn = 10 s, with the indi-
cated Pf. Parameter de is the mean of de1 and de2.
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Figure S6.  Inclusion of electroneutral (membrane potential–independent) K+ influx. (A)  = 1. Parameters: PK = 1.3 × 107 cm/s, 	
JK

n
o = 8 × 1010 mol/cm2/s, and tn = 10 s (diffusion-limited model) with the indicated Pf. (B)  = 1.5, with PK = 6.7 × 106 cm/s, JK

n
o = 	

8 × 1010 mol/cm2/s, and tn = 10 s. (C)  = 3.0, with PK = 2.7 × 106 cm/s, JK
n

o = 8 × 1010 mol/cm2/s, and tn = 10 s.

Figure S7.   Predictions of alternative K+/(Cl) coupling 
ratios of 1.5 (A), 2 (B) and 3 (C). Computations from 	
Fig. 5 C. Parameters: PK = 1.3 × 105 cm/s, JK

n
o = 8 × 1010 

mol/cm2/s, and tn = 10 s, with the indicated Pf.
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Ta b l e  S 1

Discretized equivalents of model differential and integration equations

Equation type Equation Equation number

Membrane potential equation

Membrane potential  = (RT/F) ln [( + [K+]e)/( +[K+]a)] 1

Flux equations

Potassium flux JK
a = PK (F/RT) ([K+]a  [K+]e exp(F/RT))/(1  exp(-F/RT))  JK

a
pump 2

Potassium pump flux JK
a
pump= 2JK

a
pump(0) [1 + [K+]e(0)/([K+]  [K+](0)  2[K+]e(0))] 3

Water flux JV
a = Pf vW (e  a) 4

Equations for volume and concentration

ECS volume de(t + t) = de(t) + t JV
a 5

Astrocyte volume da(t + t) = da(t)  t JV
a 6

[K+] in the ECS [K+]e (t + t) = [K+]e(t) de(t)/de(t + t) + t × JK
a /de(t + t) 7

[K+] in the astrocyte [K+]a (t + t) = [K+]a(t) da(t)/da(t + t)  t × JK
a /da(t + t) 8

Equations for osmolarity

Osmolarity in the ECS e(t + t) = e(0)de(0)/de(t + t) + 2(tJK
a)/de(t + t) 9

Osmolarity in the astrocyte a(t + t) = a(0)da(0)/da(t + t)  2(tJK
a)/da(t + t) 10

Non-K+ osmolarity [non-K+]a = a(t + t)  2 [K+]a 11

Diffusion equations

K+ diffusion [K+]/t = Da 2[K+]/x2 12

Non-K+ diffusion [non-K+]/t = Da 2[non-K+]/x2 13

Equation for flux through the moving membrane

Flux boundary condition [K+]a/t = JK
a / 14



S6 K+/water coupling in brain extracellular space

Discretization equations for numerical solution of diffusion equations
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