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Supplementary Methods 

 

Relationship between magnitude and variance of regional Fos signal and correlation strength 

We additionally evaluated the relationship between the magnitude and variance of our 

regional Fos signal and the tendency to see correlations with Fos expression in other brain 

regions. The mean and coefficient of variation (standard deviation/mean) were computed for the 

Fos counts in each of the 84 brain regions in the four groups of animals (WT/1 day, WT/36 days, 

α-CaMKII
+/-

/1 day and α-CaMKII
+/-

/36 days). The Pearson correlation coefficient was calculated 

to assess the association between (i) the mean Fos level and the mean squared Pearson 

correlation coefficient (mean r
2
) and (ii) the coefficient of variation of the Fos signal and the 

mean r
2
 by region across all 4 conditions.  

 

Evaluation of reuniens thalamic nucleus anatomical connectivity 

The direct anatomical connectivity of the reuniens thalamic nucleus was assessed by 

mining published data that investigated reuniens connectivity with infusion of tracers into the 

rodent brain. These studies were identified with the aid of an online connectivity database (The 

Brain Architecture Management System[1] [BAMS; [http://brancusi.usc.edu/bkms/]). Since the 

BAMS database remains sparsely populated, in addition this information was supplemented with 

studies identified through a PubMed search of the literature 

(http://www.ncbi.nlm.nih.gov/pubmed).   

 

Context specificity of memory at short and long retention delays  

In the main experiment, mice were trained and tested in context A. In order to assess 

whether the precision of the fear memory changes over time, we trained additional groups of 

mice using an identical protocol and then assessed their freezing in the training context (context 

A) and an alternate context (context B) either 1 or 36 days later. Context A was identical to the 

main experiment. For context B, a white plastic floor covered the shock grid bars, and a white, 

plastic, triangular insert was placed inside the conditioning chamber. As in the main experiment, 
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mice were handled prior to training (3 days, 2 min/day). One day following the completion of 

handling, mice were placed in context A for seven minutes. After two minutes they were 

presented with five unsignalled footshocks (2 s duration, 0.75 mA, 1 minute apart). Following 

the last footshock mice remained in the context for an additional minute, and were returned to 

their home cage. Either 1 day (n = 12) or 36 days (n = 14) later, freezing was assessed in 

contexts A and B. Tests were 3 min in duration, spaced ~5 h apart, and presented in a counter-

balanced order. To compare discrimination across groups, we used the freezing scores to 

compute the following index: [freezingA – freezingB]/[freezingA+ freezingB].  

 

Supplementary Results 

 

Relationship between magnitude and variance of regional Fos signal and correlation strength 

We found that functional connectivity was influenced both by retention delay and by 

genotype (Figure 2 and Figure 8). Importantly, these differences were independent of any group 

differences in Fos activation. For example, overall Fos levels were elevated in WT mice at the 

remote time-point (planned t-tests, WT/36 day > WT/1 days, α-CaMKII
+/-

/1 day, α-CaMKII
+/-

/36 

days; Ps < 0.05) (Figure S4A). However, regional correlation strength was not dependent upon 

Fos levels (or signal strength) (r = 0.021; P = 0.71) (Figure S4B), and therefore increased 

network connectivity in WT mice at the remote time-point is not simply a consequence of 

generally increased levels of activation. Moreover, while correlation strength typically increased 

as a function of variance (or coefficient of variation) (r = 0.198; P < 0.001), variance was 

equivalent across groups and therefore cannot account for increased network connectivity in WT 

mice at the remote time-point (planned t-tests, all comparisons Ps > 0.05) (Figure S4C-D).  

 

Patterns of inter-regional correlations derived from Fos and Egr-1 expression are similar  

A number of other immediate early genes are regulated by neural activity, including egr-

1 [2]. In order to explore the generality of our effects we additionally quantified Egr-1 expression 

in a subset of brain regions in the WT/36 d group. We found that Fos- and Egr-1-derived patterns 

of inter-regional correlations were similar (Figure S5): Overall correlation strength did not differ 

in the Fos vs. Egr-1 matrices (by permutation testing; P = 0.76), nor were any individual inter-

regional correlations different (P > 0.05 for all comparisons, corrected for multiple comparisons 
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using the False Discovery rate set at 5%). These results are consistent with previous studies 

showing that immediate early genes are typically expressed in the same or largely overlapping 

neuronal populations[3].  

 

Time-dependent changes in context generalization  

Mice were trained in context A and then tested in contexts A and B either 1 or 36 days 

later. At the short delay, mice froze more in context A compared to context B. In contrast, at the 

long delay, mice exhibited robust, but equivalent levels of freezing in either context (context × 

delay ANOVA; significant context × delay interaction; F(1,54) = 7.89, P < 0.005; planned paired 

t-tests indicated that freezing was greater in context A vs. B at the short [t(11) = 4.30, P < 0.005] 

but not long [t(13) = 0.31, P > 0.05] delay) (Figure S14B). Reflecting this time dependent 

increase in context generalization, discrimination declined as a function of retention delay 

(unpaired t-test, t(24) = 3.37, P < 0.005]) (Figure S14C). These time-dependent changes in 

context generalization are consistent with the idea that the contextual fear memory is 

transformed from a precise, detailed form into a less precise, generalized form[4].  

 

Supplementary Notes 

 

Defining functional connections on the basis of inter-regional analysis of Fos expression. In 

brain imaging studies, two regions are said to be functionally connected if their activity co-

varies. Co-variance may be computed either within subjects (which is typically the case in 

human imaging studies) or between subjects (more typical in experimental animal studies where 

‘activity’ is inferred post-mortem by changes in expression of activity-regulated genes, for 

example). Functional connections therefore reflect a statistical (rather than physical) relationship 

between two regions. As a purely statistical construct, functional connections may therefore be 

defined on multiple timescales, and the timescale depends on how ‘activity’ is being measured. 

For example, in electrophysiological studies, correlated patterns of spiking between two regions 

would define functional connections on the millisecond or second timescale. In contrast, 

correlated increases in the expression of an activity-regulated gene such as c-fos across two 

regions would define functional connections on the minutes to hours timescale, as Fos is induced 

by sustained neural activation and Fos expression peaks after 60-90 minutes.   
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Fos expression reflects sustained neural activation. To study the relationship between 

stimulation and Fos expression in vivo, we previously electrically stimulated of the entorhinal 

cortex, and examined Fos expression in granule cells in the dentate gyrus [3](see Figure 1). 

Importantly, we found that increases in Fos expression in dentate granule cells were 1) similar in 

magnitude to those following behavioral testing (e.g., placement of mouse in context previously 

paired with shock), 2) anatomically-specific (limited to dentate granule cells ipsilateral to 

stimulation site, consistent with predominantly unilateral efferent connections from the 

entorhinal cortex to the dentate gyrus) and 3) localized to the same subpopulations of granule 

cells expressing other activity-regulated genes (e.g., Arc). These in vivo data suggest that Fos 

induction reflects sustained neuronal activation. 

 

Control networks. Since the emergence of applying graph theoretical approaches to study real 

life networks there has been much discussion and research into the choice of approaches for 

generating appropriate control networks (e.g.[5,6]). There are many ways in which random 

graphs may be constructed, and the choice of method will result in markedly different connection 

properties. For example, one could simply generate a network in which a set number of 

connections between nodes are randomly assigned. For the purposes of providing appropriate 

controls that reflect the connection distributions of the network being studied, a standard method 

(and the one we adopt here) is to shuffle the connections between nodes, while maintaining the 

same number of connections for each node [7]. This not only preserves the overall degree 

distribution of the network, but also ensures that each node has the same number of connections 

(albeit to different partners) as the original network. In this way we can examine how the global 

properties of the network vary from our so-called 'random networks' in which local properties of 

organization are preserved. 
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