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A. Evolution of the potentials with time 
 
A.1 Videos 
 
The video videoS1.avi displays the evolution of the confining potential acting on 4 receptors 
of the ε-toxin after the addition of 20 U/ml of cholesterol oxidase. The video starts after the 
addition of cholesterol oxidase. The video displays 5 images per second. The temporal 
inference window is 40 seconds and the window is shifted by 5 seconds between each frame. 
The potential is plotted on the points visited by the receptor.  
 
The video videoS2.avi displays the evolution of the confining potential acting on 4 receptors 
of the ε-toxin after the addition of 10 U/ml of sphingomyelinase. The video starts after the 
addition of sphingomyelinase. The video displays 5 images per second. The temporal 
inference window is 40 seconds and the window is shifted by 5 seconds between each frame. 
The potential is plotted on the points visited by the receptor. 
 
The video videoS3.avi shows the confined motion of a receptor, during which a hopping 
event takes place. A Pixel is 254 nm. The hopping event happens at 55 s.  
 
 
A.2 Temporal evolution of the diffusivity and spring constant in the rafts 
 
 
Here we give the temporal evolution of the average diffusion and of the spring constant (by 
approximating the potential fields by harmonic ones) after the addition of sphingomyelinase 
and cholesterol oxidase corresponding to figure S6. 
 
 



 
 

Figure S1: Temporal evolution of the average diffusion in the raft (A) and spring constant (B) 
after the adjunction of cholesterol oxidase (in black) and of sphingomyelinase (in red). 
 

 
We also quantified the dispersion of diffusivity values inside the raft after the addition of 
sphingomyelinase and cholesterol oxidase (Fig. S2). 

 

Figure S2: Temporal evolution of standard deviation of the diffusivity map after adding 
cholesterol oxidase (black) and after adding sphingomyelinase (red). Thin lines are individual 
experiments and thick lines are the average values of all individual experiments. 

 
 
 
 
 
 
B.Definition of the hopping energy 
 
Depending on the biological system and on its dynamics there is more than one way to define 
the hopping energy. Note that biological systems may exist where the hopping energy is not 
really definable. Here, we deal with confined motion in the membrane with escaping events; 



hence, the hopping energy is the energy that the random walker needs to escape its 
confinement. 
 
B.1 1D hopping between two wells 
 
1D hopping between two wells is a well-defined system. We define the hopping energy to be 
equal to the energy difference between the deepest well and the maximum of the potential 
energy between the two wells. 

 
Figure S3: Hopping in 1D between two wells. Eh is the hopping energy. 

 
B.2 1D hopping between a confining well and free motion 
 
We define the hopping energy to be the energy difference between the maximal energy at the 
border of the domain and the minimal energy inside the confining domain.  
 



 
Figure S4: Hopping in 1D between a confining well and free motion. Eh is the hopping 
energy. 
 
 
 
B.3 2D hopping between two wells 
 
2D hopping between two confining wells leads to more issues in the definition of the hopping 
energy. Because of the multiple ways to access the second well (see Fig. S5), the definition of 
the hopping energy is not unique. We here define the hopping energy as the energy difference 
between the maximal potential value on the straight line joining the two confining well 
minima and the minimum value of the deepest potential well. 
 



 
Figure S5: Hopping energy in 2D between two confining wells. The straight red line joins the 
two confining wells’ minima (here chosen to lie along the x-axis). The hopping energy is 
defined as the energy difference between the maximum potential value along this line and the 
lowest potential minimum of the two wells (in this case, the minimum of the well on the 
right). The curved line shows another possible way to go from one well to the other. 
 
B.4 2D hopping between a confining well and free motion 
 
Here, the definition of the hopping energy is even more ambiguous because there are infinite 
ways to escape the confining area. We choose to define the hopping energy as the energy 
difference between the average value of the potential at the limit of the domain and the 
minimal value of the potential in the confining well (In the simulations the limit of the 
domains are known, in experimental work different definitions have to be devised depending 
on the nature of the confinement). This definition ignores the fact that, statistically, the 
biomolecule will tend to escape the well where the difference of potential is the lowest. Yet, 
simulations have shown that this definition is useful and it is also applied in Ref. [2] to study 
the confining potentials and hopping energies of the glycine receptors interacting with the 
scaffolding molecule gephyrin.     



 
Figure S6: Hopping between a confining well and free motion. The hopping energy is defined 
as the energy difference between the average value of the potential on the green circle and the 
minimal value of the potential in the well. Here, the domain is circular. 
 
C. Performance of the inference 
 
The large variety of biologically relevant situations prevents an analytical evaluation of all 
possible outcomes of the inference scheme. Simulations of biomolecule motion in 
environments mimicking experimental conditions are our main tools to evaluate the behavior 
of the inference. Here, we focus our simulations on the most relevant situations met 
experimentally. We also expand partially to conditions that may be found in other 
experiments. 
 
C.1 Notations and comments for hopping simulations 
 
In the rest of the supportinginformation MAP stands for Maximum A Posteriori and Pdf for 
Probability density function. Except where indicated otherwise, the double-well potentials 

used for the simulations in 1D are  with E the hopping energy and 0 
and and X the positions of the two well minima. The double-well potentials used for the 

simulations in 2D are  with E  the hopping energy, X+ and 
X+ the positions of the two well minima, and  the spring constant of the harmonic 
confinement in the y-axis direction. The y-axis confinement will be referred to as lateral 
confinement. For escaping events from a unique well in both 1D and 2D the confinement 
potentials are harmonic and symmetrical. Outside the region of confinement the potential 
value is set to 0 kBT. 
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We define the confinement factor u as in Ref. [3]. For one confinement well u=Dt/L2, with 
D the average diffusivity, Δt the time between frames and L the characteristic diameter of the 
well. For two confining wells u=Dt/L2 with D the maximal value of the average diffusivity 
in the two wells and L the characteristic diameter of the smaller confining well. 
 
Positioning noise is introduced in the simulations with Gaussian noise. This noise is used to 
model all the sources of noise found experimentally, i.e. Poisson noise due to the signal and 
the fluorescent background, camera read-out noise, and noise due to the positioning algorithm 
and the imperfect modeling of the Point Spread Function.Noise in the potential fields is 
introduced as a sum of cosine and sinus functions (section C.4). 
 
In simulations with varying diffusivity, the diffusivity takes a common value for |x|>X+  and 
another one for |x|<X+. In simulations with a unique hopping event, trajectories are generated 
in the same manner as for all the other simulations; only the ones with a unique hopping event 
are analyzed. 
 
In all the cases where we claim that the bias can be corrected, we mean that by performing 
simulations in conditions matching experimental ones, a curve or multidimensional surface of 
the bias evolution with the parameters involved can be extracted and the bias can be corrected 
by extracting all the inferred parameters from the trajectoryas in Ref. [3]. 
 
Finally, each probability density function (Pdf) in the main paper and in the supporting 
information was obtained from at least 2000 (from 2000 to 10000) numerically generated 
trajectories.  
 
C.2 Choice of the estimator 
 
In order to extract hopping energies, we chose the maximum of the a posteriori probability 
(MAP) as the estimator. In previous work (Ref. [4]), we chose (or focused on) the average 
value estimator (AVE) of the posteriori distribution. In the present case, the MAP 
outperforms other estimators (Figure S7). 

 
Figure S7: Pdf of the inferred hopping energy for the MAP estimator (Black) and for the 
average value of the posteriori probability distribution estimator (AVE, Red) for hopping 
between two confining wells in 2D. 2000 point trajectories, 3 kBT theoretical hopping energy 



(shown by the thick vertical black line), 200 nm between the two wells, 0.025 m2.s-1 
diffusivity and 25 ms acquisition time. 
 
The MAP estimator yields a distribution centered on the theoretical energy used in the 
simulations (Fig. S7). Biases in the AVE are mostly due to asymmetries in the posteriori 
distribution favoring higher diffusivities in the mesh squares and concomitantly shifting the 
hopping energy towards lower values. This phenomenon of drifting of inferred hopping 
energies towards lower values due to higher diffusivities is often encountered in these kinds 
of inference [3]. 
 
Because we are not using the AVE, we cannot access the error in the hopping energy by 
sampling the posteriori distribution. Furthermore, we cannot evaluate the Fisher Information 
[4] due to the large set of possible realizations. Therefore, the error in the hopping energy 
estimation is derived from the statistics of MAP results for numerical trajectories matching 
experimental conditions. 
 
 
C.3 Characteristics of the MAP statistics 
 
We here investigate the tail of the hopping energy MAP statistics (30000 trajectories 
generated and analyzed with inference). 

 
Figure S8: Pdf of the MAP for the hopping energy between two confining wells in 2D in log 
scale. The red curve is the asymptotic Gaussian decay. 2000 points trajectories, 3 kBT 
theoretical hopping energy (shown by the thick vertical black line), 400 nm between the two 
wells, 0.025 m2.s-1 diffusivity and 25 ms acquisition time. 
 
The statistics exhibit a fast decreasing behavior both for low and high hopping energy values 
(Fig. S8). For high hopping energy values, the statistics evolves as exp(-(Eh/0.58)2). Thus, the 
significant values of the inference are well centered around the maximum of the MAP 
statistics and there is no long-tail behavior.  
 
C.4 Noise in the potential fields 
 
The biomolecule may experience the combined effect of general potential and local 
interactions of inferior magnitude leading to a potential with noise structures. The noise 



structures can also be considered as the consequence of multiple small potential barriers. We 
simulated trajectories in a double-well potential both in 1D and in 2D with additional 
sinusoidal terms to model the substructures, with  the standard deviation of the potential 
noise and constant diffusivity. 

 
Figure S9: Evolution of the inferred diffusion coefficient (normalized to the no-noise limit) 
with the standard deviation of the potential noise for 1D double-well trajectories. The black 
dots are the average values of the MAP statistics and the red line is the Zwanzig model [5] 
that models the effect of potential noise on the diffusivity. 2000-point trajectories, 3 kBT 
theoretical hopping energy, 400 nm between the two wells, 0.025 m2.s-1 diffusivity and 25 
ms acquisition time. 
 

 
Figure S10: Evolution of the inferred diffusion coefficient (normalized to the no-noise limit) 
with the standard deviation of the potential noise for 2D double-well trajectories. The black 
dots are the average values of the MAP statistics and the red line is the 1D Zwanzig model[5]. 
2000-point trajectories, 3 kBT theoretical hopping energy, harmonic confinement along the y-
axis with spring constant 200 kBT.m-2, 300 nm between the two wells, 0.035 m2.s-1 
diffusivity and 25 ms acquisition time. 
 
The inference does not capture the substructures of the potential. However, the inferred 
diffusivities diminished with rising amplitude of the potential noise following the equation: 
D()/D(0)=exp(-2/(kBT)2). This result was predictable and has already been demonstrated by 



Zwanzig[5] who showed that noise in the potential is reflected in the diffusivity. The data in 
Figs. S9 and S10 show good agreement with the Zwanzig formula for 1D inference. In 2D, a 
different evolution is shown. To our knowledge, there are no general models describing the 
evolution of diffusivity with noise in 2D potentials. Note that evolutions tend to be extremely 
sensitive to the nature of the potential noise. 
 
C.5 Evolution of the inference with a unique hopping event allowed 
 
Experimental recordings often catch a unique hopping event. We study the MAP Pdf of the 
hopping energy with aunique hopping event limitation in 2D. 

 
Figure S11: Evolution of the MAP Pdf with hopping energy for trajectories with a unique 
hopping event. 3 kBT hopping energy in black, 5 kBT hopping energy in red and 7.5 kBT 
hopping energy in green. 2000-point trajectories, 300 nm between the two wells, 0.025 m2.s-

1 diffusivity and 25 ms acquisition time. 
 
For various conditions, when the estimator is unbiased with multiple hopping events, it 
remains unbiased for a unique hopping event. The main consequence of the unique hopping 
event limitation is the broadening the Pdf. 
 
C.6 Effect of lateral confinement in 2D motion on the inference 
 
Here, we study the effect of lateral confinement on the MAP Pdf of the hopping energy. 



 
Figure S12: Evolution of the MAP Pdf with lateral confinement spring constant for k=50 
kBT.m-2(black), k=100 kBT.m-2(red), k=200 kBT.m-2(green), k=250 kBT.m-2(blue). 2000-
point trajectories, 3 kBT theoretical hopping energy (shown by the thick vertical black line), 
0.035 m2.s-1 diffusivity, 400 nm between the two wells, and 25 ms acquisition time. 
 
There are no major effects on the statistics for large sets of lateral confinements. This effect 
confirms that, for various experimental conditions, 1D and 2D trajectories lead to the same 
results and that, therefore, 1D simulations may catch most of the information necessary to 
characterize the inference behavior. 
 
 
C.7 Effects of diffusivity on the inference of hopping energies between two wells 
 
a) Uniform diffusivity in 1Dtrajectories 
 
Certain diffusivity values and experimental conditions leading to a high confinement factor, u, 
may generate bias on the inference in the case of simple confinement [3]. These effects can be 
compensated in most cases. Here, we show the effect of the rise of the global diffusivity on 
the inference for 1D trajectories (Fig. S13). Similar effects of lesser magnitude are observed 
for 2D trajectories. 



 
Figure S13: Evolution of the MAP Pdf of the hopping energy with the diffusivity for a 1D 
double-well potential. D=0.01 m2.s-1 in black, D=0.02 m2.s-1 in red, D=0.04 m2.s-1 in 
green, D=0.075 m2.s-1 in blue, D=0.1 m2.s-1 in cyan. 2000-point trajectories, 3 kBT 
theoretical hopping energy (vertical Black line), 400 nm between the two wells, and 25 ms 
acquisition time. 
 
Interestingly, despite the rise of diffusivity and consequently confinement factor u inside each 
well,we still obtain good inferences. As the diffusivity rises, the inferred hopping energies 
decrease. The bias evolution can be fitted by a second-order polynomial and thus 
compensated (Fig. S14). The drift of hopping energy with diffusivity always shows the same 
behavior. The drift curve depends on the value of the hopping energy, the level of 
confinement inside each well, and the distance between the two wells. Whereas confinement 
was a major issue when dealing with motion inside a unique well,in the double-well case, 
information can be retrieved for higher confinement factors u than for a unique well 
confinement. 
 

 
Figure S14: Evolution of the average MAP values with diffusivity. The black dots are the 
results of the inferences and the red line is aparabolic fit.  



 
 
b) Varying diffusivities in 1D trajectories 
 
Here, the diffusivitiesare identical in the two wells but are higher in the central zone between 
the two wells ( ). As the diffusivity in the central hopping zone rises, the inferred value 

of the hopping energy shifts towards lower values. The shift is deterministic, always lowering 
the inferred value of the hopping energy with rising central diffusivities. Therefore, this bias 
can be corrected. 
 
 

 
Figure S15: Evolution of the MAP Pdf with varying central diffusivity for a 1D double-well 
potential. D=0.00625 m2.s-1 in black, D=0.0125 m2.s-1 in red, D=0.05 m2.s-1 in green, 
D=0.075 m2.s-1 in blue, D=0.125 m2.s-1 in cyan. 2000-point trajectories, 3 kBT theoretical 
hopping energy (shown by the thick vertical black line), diffusivities in the wells D=0.025 
m2.s-1, 400 nm between the two wells, and 25 ms acquisition time. 
 
c) Varying diffusivities in 2D trajectories 
 
 

 

x  X



Figure S16: Evolution of the MAP Pdf with varying central diffusivity for a 2D double-well 
potential. D=0.00625 m2.s-1 in black, D=0.0125 m2.s-1 in red, D=0.05 m2.s-1 in green, 
D=0.075 m2.s-1 in blue, D=0.125 m2.s-1 in cyan. 2000-point trajectories, 3 kBT theoretical 
hopping energy (shown by the thick vertical black line), diffusivities in the wells D=0.035 
m2.s-1, 400 nm between the two wells, and 25 ms acquisition time. 
 
Here also, the diffusivities are identical in the two wells but are higher in the central zone 
between the two wells ( ).The change of central diffusivity may have a strong effect on 

the inference. We here show a unique set of simulation results. Extended simulations, 
however, have shown that these biases are sensitive to the diffusivity inside the wells, to the 
distance between the wells, to the hopping energy and to the nature of the lateral confinement. 
Therefore, when dealing with varying diffusivities, large amounts of simulations must be 
performed to catch the effect of the different parametersof the environment on the inference 
and the resulting biases. However, these biases can be compensated. 
 
C.8 Escaping from a Unique Well to Free Motion 
 
Experimentally, none of the toxin receptors exhibited pure escaping behavior from unique 
wells. Yet, this is an important case that appears in many other biological systems: the 
biomolecule escapes from a confinement area and then diffuses freely (or under a much more 
shallow potential). In these cases, the same inference scheme, as the one used for the double 
well trajectories, is used on the trajectories; however, the two main issues are the definition of 
the domain size and the definition of the hopping energy (see section A). In the following 
simulations, the size of the confinement domain and the shape its limits are supposed to be 
known. 
 
a) 1D trajectories 
 
The hopping energy is defined as the higher of the two energies at the limit of the domain. We 
have shown, in the main text, the behavior of the inference with the hopping energy assuming 
that the diffusivity is identical inside and outside the well. Here, we show for a unique 
hopping energy the evolution of the MAP statistics with a differentexternal diffusivity. 
 
 
 

 

x  X



Figure S17: Evolution of the MAP Pdf with the external diffusivity. D=0.0088 m2.s-1 in 
black, D=0.0175 m2.s-1 in red, D=0.07 m2.s-1 in green, D=0.105 m2.s-1 in blue, D=0.175 
m2.s-1 in cyan and D=0.35 m2.s-1 in yellow. 2000-point trajectories with at least 1000 points 
inside the well, 3 kBT theoretical hopping energy (shown by the thick vertical black line), 
diffusivity inside the well D=0.035 m2.s-1, 100 nm radius of the well, and 25ms acquisition 
time. 
 
In the unique well escaping inference, the external diffusivity does not modify strongly the 
bias but mainly broadens the Pdf. Here again, bias and evolution are sensitive to the diffusion 
inside the well, the size of the well and the shape of the potential. 
 
 
b) 2D trajectories 
 
Here, we show for a unique hopping energy the evolution of the MAP statistics with changing 
external diffusivity.The evolution is similar to the one for 1D trajectories. The major effect of 
the rise of external diffusivity is the broadening of the MAP Pdf. 
 
 

 
Figure S18: Evolution of the MAP Pdf with external diffusivity. D=0.0125 m2.s-1 in black, 
D=0.05 m2.s-1 in red, D=0.125 m2.s-1 in green, and D=0.25 m2.s-1 in blue. 1000-point 
trajectories with at least 500 points in the well, 5 kBT theoretical hopping energy (shown by 
the thick vertical black line), diffusivity inside the well D=0.025 m2.s-1, 100 nm radius of the 
well, and 25 ms acquisition time. 
 
 
C.9 1D vs. 2D simulations 
 
In many simulation conditions, we noticed that inferences performed on 1D simulated 
trajectories lead to the same results as inferences performed on 2D trajectories. In these cases, 
as extensive simulations are needed to evaluate noise and bias on the inferred parameters, 1D 
simulations which are much faster to compute may be used to capture the essential features of 
the inference performance. 
 
 



D. Experimental hopping 
 
D.1Identification of the hopping events 
 
In order to eliminate the possibility of fast local motion of the membrane that could be 
assimilated to hopping, hopping events were only considered as such if locally, in the 
recorded image, the other receptors did not exhibit any sudden motion or hopping-like events. 
 
D.2Correctingharmonic bias  
 
 
When performing the inference in the harmonic approximation of the potential, some bias 
appears during optimization. We mentioned this effect in Ref. [3], showed its evolution with 
the confinement factor u and how to correct it. Here, we display the inferred values of 
diffusivity and spring constant as a function of the input values of diffusivity and spring 
constant when the inference is performed on numerically generated trajectories. 



 
 

Figure S19: Evolution of the inferred value of the diffusivity (A) and spring constant (B) with 
the input diffusivity and spring constant used in the numerical simulations of the trajectories.  
 
These two plots allow correction of all the spring constant and diffusivity values inferred from 
experimental trajectories. 
 
 
D.3Examples of two-wellpotentials 
 
 
 



a) Low hopping energies 
 
 

 
 
Figure S20: Three examples of two-well potentialswith low hopping energy between the two 
wells. On the left, only the trajectory points are superimposed on the image; on the right, the 
trajectory points are linked to materialize the trajectory. The inferred hopping energies are 
from top to bottom: 0.47, 0.26, and 0.43 kBT.  
 
 
 
 
 



b) High hopping energies 
 
 

 
 
Figure S21: Three examples of two-well potentialswith high hopping energy between the two 
wells. On the left, only the trajectory points are superimposed on the image; on the right, the 
trajectory points are linked to materialize the trajectory. The inferred hopping energies are 
from top to bottom: 1.7, 1.2, and 2.3 kBT.  
 
 
 



c) Figure 4 with materialization of the trajectory  
 
We show the diffusivity and potential fields of Figure S22 with connected trajectory points to 
materialize the trajectory.  

 
 
Figure S22: Diffusivity and Potential Map with the full visible trajectory of the receptor 
corresponding to Figure 4.A) Diffusivity map of the membrane area where the receptor 
moves. The diffusivity field was generated by abi-harmonic interpolation of the inferred 
diffusivity field on the mesh. B) Inferred interaction energy map felt by the receptor. Black 
lines connect the successive positions of the biomolecule. 
 
 
 
d) Intermediate structures 
 
In some cases, the inferred potential exhibited a main well and a lateral extension without a 
second local minimum. We designate this type of potential a confinement well with 
intermediate structures. An example of these structures is shown in Fig. S23. 
 

 
 
Figure S23: Interaction potential acting on the ε-toxin receptor inferred from a 4262-point 
trajectory. On the left, only the trajectory points are superimposed on the image; on the right, 
the trajectory points are linked to materialize the trajectory. 
 
15 trajectories exhibited this type of structure. Interestingly, these potentials do not show a 
second minimum, yet there are two well-defined areas of the potential. These potential 
structures suggest that the larger rafts may be formed by coalescence of smaller rafts that 
undergo lipid reorganization. The two-well potentials with small hopping energies that we 
observe may be linked to early stages in the coalescence process, where the lipid organization 



of the rafts is still similar to that of isolated ones. Experimental trajectories on even longer 
time scales are necessary to fully confirm that these are indeed coalescence processes. The 
main difficulty is the related to the local motion of the cell membrane that prevents efficient, 
reliable use of the inference. 
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