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SI Methods
Here, we explain the derivation of Eq. 2 in the main text, and derive
the rescaled equation Eq. S1. We assume infinitely many patches,
and the resulting dynamics are that of a well-mixed population of
patches with the following mean-field equation (Fig. 1D):
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where the first term on the right-hand side of the first equality
corresponds tomortality or resource exchange, the second term to
invasion of q-migrants into empty patches, the third term to in-
vasion of q-migrants into already occupied patches, the fourth
term to invasion of competing migrants into q-patches, and the
fifth term to mutations that slightly tune q at a rate μ. Next,
scaling all rates by the mortality m, as ~q ¼ q=m, ~ρ ¼ mρ, ~s ¼ ms,
and ~μ ¼ μ=m3, yields
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[S1]

We used this equation to simultaneously fit data from different
scales (Fig. 3B).

SI Nearly Periodic, Stationary Pattern
In this section, we derive analytic steady-state solutions of our
model. We use the following three simplifying assumptions: (i)
mutation rate μ is extremely small, hence the population abun-
dance is adiabatically adjusted as the mutation process proceeds
(adaptive dynamics) (1); (ii) selection is strong (s � 1=m); and
(iii) the invasion probability function g is given by a piecewise
linear function (Eq. S6 below) instead of by Eq. 1. We conclude
that the leftmost peaks along the q-axis are located at nearly
equal distances from one another (this period is equal to the
width over which g varies), and have nearly equal magnitudes.
This implies a nearly periodic pattern starting at the right side of
the singularity at q ¼ m.

First Peak. To find the location of the first, leftmost peak, assume
that initially the entire population has the same maximal growth
rate q ¼ q1. Without mutations, it follows from Eq. 2 in the main
text that the fraction of occupied patches, Γðq1Þ, evolves ac-
cording to

dΓðq1Þ
dt

¼ Γðq1Þ½q1 −m− q1Γðq1Þ�

with the steady-state solution (Fig. S2)
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When rare mutants appear, they gradually invade the population
if and only if their growth rate is positive (1). The growth rate of
a q′-mutant in a resident q1-population is proportional to

f
�
q′; q1

� ¼ � 1
ρðq′Þ

dρ
�
q′
�

dt

�����
ðρðqÞ¼Γðq1Þδðq−q1Þ;μ¼0Þ

¼ q′−m−Γðq1Þ
�
q1 þ q′

�
gs

�
q′; q1

�
;

[S3]

where the term q′ corresponds to colonization, the term m cor-
responds to mortality, and the last term is an inhibitory one re-
sulting from competition. The direction toward which small
mutations drive the population is determined by the sign of the
selection gradient
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When q1 is initially large, Γðq1Þ also is large and the inhibition via
competition is the most prominent term (Dðq1Þ< 0). Evolution
then pushes the population toward lower q until q1 approaches
qc, where DðqcÞ ¼ 0 and the benefit from reduced inhibition by
competition is compensated by the cost of slower colonization.
For s � 1=m, this implies
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Note that qc indeed locally maximizes f ðq′; qcÞ because
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Following Peaks.Toderive the locationof thesecondpeak,weassume
that g is given by a piecewise linear function that replaces Eq. 1:
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With this function, the steady-state location and magnitude of
the first peak are still given by Eq. S5 [because gð0Þ and g′ð0Þ
have the same values in Eq. S6 and in Eq. 1]. Next, we state that
the second peak does not influence the first, and later we will
verify this statement, which allows us to use Eq. S5 in calculating
the second peak.
The per capita growth rate of a q′-species, given two popula-

tions at qc and at q2 ði:e:; ρðqÞ ¼ ΓðqcÞδðq− qcÞ þ Γ2ðq2Þδðq− q2ÞÞ,
is given by
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where Γ2ðq2Þ is the fraction of patches occupied by the pop-
ulation from the second peak at q2. If the population at q2 is
viable, then Γ2ðq2Þ evolves until it saturates as the growth rate of
the population at q2 is 0, and then f ðq2; q2; qcÞ ¼ 0; which implies
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In line with our statement, the second peak does not affect the
first, because q2 is greater than qc by at least 2=s; therefore,
gðqc; q2Þ ¼ 1 and gðq2; qcÞ ¼ 0 (Eq. S6).
The selection gradient for the second peak is given by
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The same method can be applied to derive the steady-state
locations and magnitudes of the third peak, fourth peak, an so on.
In the first order of 1=sm, the first few peaks are periodically
located at distances of approximately δq ≈ 4=s from one another,
which implies a nearly periodic pattern.

SI Dimensional Analysis
General Considerations. Several insights may be gained by merely
analyzing the dimensions of the observables and parameters of
our model. First, note that q is a variable along the character axis,
which consequentially has its own dimension (q ∼ ½q�). However,
in our model, we also consider q as the migration rate, which
seemingly implies q ∼ 1=½t�. Hence, a more appropriate claim for
the sake of dimensional analysis is that the migration rate is λq,
where λ ∼ ½t�=½q�, and in our model we simply set λ ¼ 1. Next,
note that s ∼ 1=½q� (Eq. 1), which implies sm=λ ∼ ½1�. This explains
our assumption s � 1=m in the previous section.

Width of the Leftmost Peak. To find the steady-state characteristic
width of the leftmost peak, A, note that it is determined by μ and
by the per capita growth rate, f ðqÞ. For sufficiently low μ, the
peak is narrow, and because at steady state f ðqcÞ ¼ f ′ðqcÞ ¼ 0, A
depends solely on f ″ðqcÞ and on μ. Because

μ ∼
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Direct calculations yield
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Setting λ ¼ 1 yields

A ∼ ðμmÞ1=4:
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Fig. S1. Emergence of species packing. Steady-state distributions of the model (Eqs. 1 and 2) are demonstrated on logarithmic y-axes when parameters are
varied. (Top) Various values of stochasticity, s−1. When competition is deterministic, the distribution is smooth (left), whereas when competition is sufficiently
stochastic, lumpy patterns emerge. Peaks appear near the singularity at q ¼ m and become more apparent with increased stochasticity. (Middle) Various
mutation rates, μ. Without mutations, the entire distribution is quantized with sharp zero-width peaks, whereas as μ increases, peaks become wider and are
apparent only near the singularity. Peaks do not appear if μ is sufficiently large (right). (Bottom) Various invasion probability functions, g, all of which are
sigmoidal, symmetric functions with the same variation width. (C1) g is given by Eq. 1 in the main text with s ¼ 4. (C2) g is a piecewise linear function (Eq. S6
with s ¼ 4). (C3) gðq;q′Þ ¼ 1

2 þ 1
2erfð

ffiffiffi
π

p ðq′−qÞÞ. (C4) gðq;q′Þ equals 1− 1
2e

2ðq−q′Þ if q<q′, and 1
2e

−2ðq−q′Þ otherwise. In all four cases, the pattern is multimodal on
the left, followed by a smooth tail on the right. Other parameters: μ ¼ 10−8 (Top), s ¼ 8 (Middle), and μ ¼ 10−7 (Bottom).
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Fig. S2. Demonstrated is the steady-state fraction of occupied patches, Γðq1Þ, provided the entire population has the same maximal growth rate q1 (Eq. S2).
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Movie S1. Stochastic competition promotes multimodal distributions. The dynamics of the distribution ρ(q) (Eq. 2) is demonstrated for stochastic competition
(s = 8, μ = 10−7). Packs emerge and propagate leftward to lower q. The first few packs on the left approach stable positions, thus creating a steady-state
multimodal pattern, whereas the packs that follow merge into a smooth tail.
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Movie S2. Deterministic competition promotes smooth distribution. The dynamics of the distribution ρ(q) (Eq. 2) is demonstrated for deterministic compe-
tition (s = ∞, μ = 10−6). Packs propagate leftward to lower q. The first few packs vanish at q = m, leaving the packs that follow to create a smooth distribution.

Movie S2
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Movie S3. From smooth to multimodal distribution. When competition is stochastic (s = 32, μ = 10−8) and ρ(q) is initially smooth, a nearly periodic pattern
of propagating packs emerges. Eventually, a stationary lumpy pattern remains near the singularity q = m, whereas on the right, the distribution becomes
smooth again.

Movie S3

Lampert and Tlusty www.pnas.org/cgi/content/short/1211761110 5 of 5

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1211761110/-/DCSupplemental/sm03.wmv
www.pnas.org/cgi/content/short/1211761110

