Supplementary Information

Anti-folate combination therapies and their affect on the development of drug resistance in *Plasmodium vivax*

Shuai Ding^{1†}, Run Ye^{1†}, Dongmei Zhang^{1*}, Xiaodong Sun², Hongning Zhou², Thomas F. McCutchan¹, Weiqing Pan^{1*}

1. Department of Pathogen Biology, Second Military Medical University, 800 Xiang Yin Road, Shanghai 200433, China

2. Yunnan Institute of Parasitic Diseases, Puer, Simao, Yunnan 665000, China

[†] S.D. and R.Y. contributed equally to this work.

*To whom correspondence should be addressed. E-mail: <u>wqpan0912@yahoo.com.cn</u> and <u>dm_zhangsh@yahoo.com.cn</u>; Fax: 86-21-65331272, Tel: 86-21-81871010.

Contents

1. Extended Methods ······	3
2. Supplementary Tables S1-S6 ·····	5
3. Supplementary Figures S1	11

Extended Methods

Study sites and sampling information

Isolates of *P. vivax* included in this study were collected from Yunnan, Hainan Island and Central China area (Anhui, Henan and Hubei provinces) in which over 90 percent of the country's malaria cases occur.

Yunnan province is located in the far southwest of the country and borders Burma, Laos, and Vietnam. Average annual rainfall in Yunnan ranges from 600 mm to 2,300 mm, with over half the rain occurring between June and August. Yunnan has one of the highest malaria burdens in China. The areas we selected in this study include Tengchong city, Gongshan and Fugong counties along the Nu River, where epidemiological features of malaria and history of drug use was recorded. *Anopheles minimus* and *An. dirus* are the main vectors and transmission is year-round with two peaks (July and September). From the middle 1960's, the pyrimethamine and sulfadoxine in combination were introduced as antimalarial prophylactic remedy in Yunnan. Until the early 1990s, use of SP combination was inactivated when the drug resistance was discovered by a local institute.

Central China area includes five malaria-endemic provinces, i.e. Henan, Anhui, Hubei, Jiangsu and Shandong. The area has a distinct seasonal climate characterized by humid summers and dry winters. The annual rainfall averages between 500–750mm across the region and the rainy season lasts from June to September. Malaria in Central China area can be classified as seasonally unstable and epidemic. *An. sinensis* and *An. anthropophagus* are the main vectors. We collected the *P. vivax* isolates in this study from the regions where *vivax* malaria were recently reemerged, including Lizhai and Maqiao counties in Henan province, Yingshang, Huaiyuan, Woyang, Huaibei counties in Anhui province and Xiangyang city in Hubei province. In the early 1960s, pyrimethamine was introduced as an anti- recurrence medicine and prophylactic. The use of pyrimethamine was stopped in the middle 1980s and replaced by chloroquine and primaquine.

Hainan Island is located in Southern China. It is a relatively geographically isolated area hot throughout the year. The average annual precipitation is 1,500 to 2,000 mm and can be as high as 2,400 mm in central and eastern areas. The average relative humidity is around 80%. The major malaria vectors in this region are An. dirus and An. minimus. Malaria transmission is perennial and fresh malaria cases are reported throughout the year. In the Island, vivax-endemic area mainly encompasses the regions including Sanya city, Dongfang and Ledong counties where we collected the samples. Pyrimethamine was introduced on Hainan Island in 1959, and then combined with sulfadoxine in 1967. However the combination of antifolates were confined to several villiages in the southern and southwestern parts of island during 1968 to 1972. With the emergence of chloroquine-resistant and pyrimethamine-resistant plasmodium strains in the middle 1970s, piperaguine was massively employed as alternative antimalarial agents to treat or prevent malarial infections in the island since 1979. In addition, the combination of both antifolate drugs plus either primaquine or artemisinin were used as a presumptive treatment and for chloroquine-resistant *falciparum* parasite treatment.

- 4 -

Primers	Sequences	Annealing	Product	Cycles	
		Temp(°C)	Size (bp)	1 st	2 nd
POF	5' CACCGCACCAGTTGATTCCT 3'	58	979	20	
POR	5' CCTCGGCGTTGTTCTTCT 3'				
PBF	5' CCC CAC CAC ATA ACG AAG 3'	58	755		25
PAR	5' CCC CAC CTT GCT GTA AAC C 3'				
DHPS-F1	5'GATGGCGGTTTATTTGTCG 3'	58	1009	18	
DHPS-R1	5' GCTGATCTTTGTCTTGACG 3'				
DHPS-F2*	5'GCTGTGGAGAGGATGTTC 3'	59	731		22
DHPS-R2*	5' CCGCTCATCAGTCTGCAC 3'				
PDR2	5'-AAGGAGAACCAGCAAGAC-3'	59	3237	26	
PDF2*	5'-AAGCGTAGCGACAGAAG-3'				
S4*	5'-CAGGCGATGCTCTACGTT-3'	60	3023		26
S1*	5'-CGACAGAAGAACGCA-3'				
S2*	5'-TTCAGTGACGCTCGGATT-3'				
S3*	5'-TACCACGCTACCGAGT-3'				

Table S1 Primers and profiles used for amplification of the *Pvdhfr* and *Pvdhps* gene

Table S2 Microsatellite markers in the flanking regions of the *P. vivax dhfr* gene

Microsatellite	Pos. from dhfr	Repeat unit sequence	Repeat Array
u93	-93kb	ТА	10
u38	-38kb	AT	9
u2	-2.6kb	ΑΑΑΤC-ΑΑΑΤΤ-ΑΑΑΤG	7-8-4
d4	+4.9kb	AT-ac-AT-g-TATG	4-9-3
d37	+37kb	TA-c-AT	5-5
d94	+94kb	СТ	8

Primers	Sequences	Annealing	Product	Cycles	Size range	
		Temp(℃)	Size (bp)	1 st 2 nd	–(bp)	
u93F4	5' TGTTTTCACCCTTCAGATA 3'	50	267	15		
u93R3	5' CTCCTGCTTTGGTACAATAA 3'					
u93F	5' GGTGAATAAGGGACCAAT 3'	47	138	22	132~154	
u93R	5' CCCACATTTGTTGCTAA 3'					
u38F	5'ACCCCACGCACATCCGTA 3'	55	307	25		
u38R2	5' TGGGCTATTCCGTCAATCAA 3'					
u38F	5'ACCCCACGCACATCCGTA 3'	60	140	20	146~160	
u38R	5'GGGTGGGGGCATCTATTT 3'					
u2F8	5'G CTCCTCACAAACACATACAAAT 3'	57	850	18		
u2R7	5'GCGGCTACACAGTGGAAAAATA 3'					
u2.6F3	5' GGCTATACGAAGACAAAC 3'	52	300	25	245~305	
u2.6R	5' AACCCTGACCGTTACAT 3'					
d4.9F0	5' GAGGGAACGGCTTTTCTT 3'	52	179	15		
d4.9R	5' AGTGGGCCAAACAAATA 3'					
d4.9F	5' GGGCAAAAGCTGAACAT 3'	58	110	35	108~122	
d4.9R	5' AGTGGGCCAAACAAATA 3'					
d38F	5' TGTGCTGTCTGGAGAATA 3'	48	152	35	148~160	
d38R	5' CCACTTTTGGACACTAAA 3'					
d94F	5' CGAGCAGGTTCTCATAGA 3'	50	122	35	116~140	
d94R	5'CCCTAATTTGGCATGAAA 3'					

Table S3 Primers and profiles used for amplification of the flanking microsatellites

	u93	u38	u2	d4	d37	d94	
Sensitive alleles	0.729±0.018	0.772±0.020	0.764±0.014	0.725±0.029	0.757±0.018	0.807±0.022	
117N alleles in	0 812+0 012	0 675+0 035	0 251+0 061	0 615+0 030	0 728+0 025	0 670+0 037	
Central China area	0.01210.012	0.07510.055	0.23110.001	0.01510.050	0.72010.023	0.070±0.037	
58R/117N alleles in	0 677+0 052	0 535+0 067	0 000+0 059	0 303+0 074	0 566+0 076	0 840+0 022	
Hainan	0.07710.032	0.55510.007	0.09010.039	0.30310.074	0.00010.070	0.040±0.022	
57I(L)/58R/61M/117T	0 7/2+0 026	0 692+0 033	0 606+0 033	0 27/1+0 052	0 568+0 039	0 823+0 027	
alleles in Yunnan	0.7 +2±0.020	0.03210.000	0.000±0.000	0.27 +±0.002	0.000±0.009	0.020±0.021	

dhps	Intr	on1	pppk		Intron2					Repetitive domain				frequency
	141G	262A	205M	2327G	2389G	2410C	1	2	3	4	5	6	7	-
SAKA	G	А	М	0	0		GEAKLTN- GEGKLTN-	GEGKLTN-	GEAKLTN-	GEGKLTN-	GDAKLTN-	GDSKLTN-	GEAKLTN-	2
				G	G	C	GEAKLTN-							
SAKA	G	A	М	G	G	I	GEAKLTN- GEGKLTN-	GEGKLTN-	GEAKLTN-	GEGKLTN-	GDAKLTN-	GDSKLTN-	GEAKLTN-	1
SAKA	G	A	<u>1</u>	G	G	С	GEAKLTN- GEGKLTN-	GEGKLTN-	GEAKLTN-	GEGKLTN-	GDAKLTN-	GDSKLTN-	GEAKLTN-	4
SAKA	G	A	<u>1</u>				GEAKLTN- GEGKLTN-	GEGKLTN-	GEAKLTN-	GEGKLTN-	GDAKLTN-	GDSKLTN-	GEAKLTN-	6
				G	G	С						GEAKLTN-		
SAKA	G	A	<u>1</u>				GEAKLTN-	GEGKLTN-	GEAKLTN-	GEGKLTN-	GDAKLTN-	GDSKLTN-	GEAKLTN-	2
				G	G	С						GDSKLTN-		
SAKA	G	А	L	G	G	С	GEAKLTN-	GEGKLTN-	_	GEGKLTN-	GDAKLTN-	GDSKLTN-	GEAKLTN-	5
SAKA	G	А	L	G	G	С	GEAKLTN-	GEGKLTN-	GEAKLTN-	GEGKLTN-	GDAKLTN-	GDSKLTN-	GEAKLTN-	1
SAKA	G	А	<u>1</u>	G	G	С	GEAKLTN- GEGKLTN-	GEGKLTN-	_	_	GDAKLTN-	GDSKLTN-	GEAKLTN-	1
SAKA	G	A	<u>1</u>	<u>A</u>	G	I	GEAKLTN-	GEGKLTN-	GEAKLTN-	GEGKLTN-	GDAKLTN-	GDSKLTN-	GEAKLTN-	1
SAKA	G	А	<u>1</u>	<u>A</u>	G	I	GEAKLTN-	GEGKLTN-	GEAKLTN-	GEGKLTN-	GDAKLTN-	GDSKLTN-	GEAKLTN-	2
SAKA	G	I	L	G	G	T	GEAKLTN- GEGKLTN-	GEGKLTN-	GEAKLTN-	GEGKLTN- GDAKLTN-	GDAKLTN-	GDSKLTN-	GEAKLTN-	2
							GEAKLTN-			GEGKLTN-				
S <u>G</u> KA	G	А	L	G	G	T	GEAKLTN-	GEGKLTN-	GEAKLTN-	GEGKLTN-	GDAKLTN-	GDSKLTN-	GEAKLTN-	5
S <u>G</u> KA	I	A	L	G	G	I	GEAKLTN-	GEGKLTN-	GEAKLTN-	GEGKLTN-	GDAKLTN-	GDSKLTN-	GEAKLTN-	3
S <u>G</u> KA	G	А	L	G	G	С	GEAKLTN- GEGKLTN-	GEGKLTN-	GEAKLTN-	GEGKLTN- GDSKLTN-	GDAKLTN-	GDSKLTN-	GEAKLTN-	2
S <u>G</u> KA	G	I	<u>1</u>	G	G	С	GEAKLTN- GEGKLTN-	GEGKLTN-	GEAKLTN-	GEGKLTN-	GDAKLTN-	GDSKLTN-	GDSKLTN-	1
S <u>G</u> KA	G	I	<u>I</u>	G	G	С	GEAKLTN-	GEGKLTN-	_	_	GDAKLTN-	GDSKLTN-	GEVKLTN-	3
S <u>G</u> KA	G	I	<u>I</u>	<u>A</u>	G	I	GEAKLTN-	GEGKLTN-	GEAKLTN-	GEGKLTN-	GDAKLTN-	GDSKLTN-	GDSKLTN-	3

 Table S5 The entire P.vivax pppk-dhps of 158 isolates in Yunnan field isolates

<u>AG</u> KA	G	I	<u>1</u>	G	G	С	GEAKLTN- GEGKLTN-	GEGKLTN-	GEAKLTN-	GEGKLTN-	GDAKLTN-	GDSKLTN-	GEAKLTN-	1
<u>AG</u> KA	G	А	<u>1</u>	G	G	С	GEAKLTN- GEGKLTN-	GEGKLTN-	GEAKLTN-	GEGKLTN-	GDAKLTN-	GDSKLTN-	GEAKLTN-	18
<u>ag</u> ka	G	А	<u>1</u>	G	G	С	GEAKLTN-	GEGKLTN-	_	_	GDAKLTN-	GDSKLTN-	GEVKLTN-	2
S <u>G</u> K <u>G</u>	G	I	<u>1</u>	G	G	С	GEAKLTN-	GEGKLTN-	_	_	GDAKLTN-	GDSKLTN-	GEVKLTN-	3
S <u>G</u> K <u>G</u>	G	А	<u>1</u>	<u>A</u>	G	I	GEAKLTN-	GEGKLTN-	GEAKLTN-	GEGKLTN-	GDAKLTN-	GDSKLTN-	GEAKLTN-	1
S <u>G</u> K <u>G</u>	G	I	<u>1</u>	G	G	I	GEAKLTN-	GEGKLTN-	GEAKLTN-	GEGKLTN-	GDAKLTN-	GDSKLTN-	GEAKLTN-	1
S <u>G</u> K <u>G</u>	G	I	<u>1</u>	G	I	I	GEAKLTN-	GEGKLTN-	GEAKLTN-	GEGKLTN-	GDAKLTN-	GDSKLTN-	GEAKLTN-	8
S <u>G</u> K <u>G</u>	G	I	<u>1</u>	<u>A</u>	G	I	GEAKLTN-	GEGKLTN-	GEAKLTN-	GEGKLTN-	GDAKLTN-	GDSKLTN-	GEAKLTN-	60
<u>AG</u> K <u>G</u>	G	I	<u>1</u>	<u>A</u>	G	I	GEAKLTN- GEGKLTN-	GEGKLTN-	GEAKLTN-	GEGKLTN-	GDAKLTN-	GDSKLTN-	GEAKLTN-	3
<u>AG</u> K <u>G</u>	G	I	<u>1</u>	<u>A</u>	G	I	GEAKLTN-	GEGKLTN-	GEAKLTN-	GEGKLTN-	GDAKLTN-	GDSKLTN-	GEAKLTN-	1
<u>AG</u> K <u>G</u>	G	А	<u>1</u>	<u>A</u>	G	I	GEAKLTN-	GEGKLTN-	GEAKLTN-	GEGKLTN-	GDAKLTN-	GDSKLTN-	GEAKLTN-	3
<u>AG</u> K <u>G</u>	G	А	<u>1</u>	G	G	С	GEAKLTN- GEGKLTN-	GEGKLTN-	GEAKLTN-	GEGKLTN-	GDAKLTN-	GDSKLTN-	GEAKLTN-	10
S <u>GMG</u>	G	I	<u>1</u>	<u>A</u>	G	I	GEAKLTN-	GEGKLTN-	GEAKLTN-	GEGKLTN-	GDAKLTN-	GDSKLTN-	GEAKLTN-	1
S <u>GMG</u>	G	I	<u>1</u>	G	I	I	GEAKLTN-	GEGKLTN-	GEAKLTN-	GEGKLTN-	GDAKLTN-	GDSKLTN-	GEAKLTN-	1
S <u>GTG</u>	G	I	l	<u>A</u>	G	I	GEAKLTN-	GEGKLTN-	GEAKLTN-	GEGKLTN-	GDAKLTN-	GDSKLTN-	GEAKLTN-	1

Legend:

The table S5 shows details of the mutations in coding regions, introns and indels in the *pvpppk-dhps* gene. The first column is referred to as single letter amino acid abbreviation of codons 382, 383, 512 and 553 in *dhps*. The frequency of each haplotype is in the last column. The mutant amino acids in bold are underlined.

	dhfr			dhps	
	Thailand	Yunnan,China	Thailand	Yunnan,China	
wild type	1.90%	8.64%	1.90%	17.79%	
Single mutant	0.60%	7.27%	26.30%	12.50%	
Double mutants	35.60%	11.81%	60.60%	60.10%	
Triple mutants	2.50%	11.80%	9.50%	9.61%	
Quadruple	EQ 409/	60 459/	1.00%		
mutants	59.40%	00.45%	1.90%	—	

Table S6 Prevalence of *pvdhfr* and *pvdhps* mutant alleles in *P. vivax* isolates from Thailand and Yunnan

Legend:

The table S6 shows the frequency of *dhfr* and *dhps* genotypes. Quadruple mutant alleles in *dhfr* (57I/L+58R+61M+117T) and double mutant alleles in *dhps* (383G+553G) were observed frequently in isolates collected from Thailand and Yunnan, where both under long-term SP selection pressures. So we analyzed linkage disequilibrium for the Thailand isolates.

Figure S1.Expected heterozygosity around different *dhfr* alleles.

Legend:

The microsatellite markers are ordered along the x-axis and He (±1 s.d.) plotted against position on the chromosomes relative to *dhfr*. The allele types with over 40 samples from a single region are plotted. Microsatellite variability is reduced to varying degrees around the *dhfr* locus in the resistant alleles.