Supplementary Information

Trs130 participates in autophagy through GTPases Ypt31/32 in

Saccharomyces cerevisiae

Zou *et al.*,

Table S1. Yeast strains and plasmids used in this study

A. Strains			
Strain	Alias	Genotype	Source
NSY991	VSY459,	MATa leu2-3,112 his3-Δ200 trp1-Δ901	(1)
	TRS130	lys2-801 suc2-∆9 ura3-52	
		TRS130-HA::HIS3MX6	
NSY992	trs130ts	MATa leu2-3,112 his3-Δ200 trp1-Δ901	(1)
		lys2-801 suc2-Δ9 ura3-52 trs130-(33 aa	
		truncation)-HA ^{ts} ::HIS3MX6	
YLY2360	GFP-Atg8	NSY991, GFP-ATG8::URA3	This study
	TRS130		
YLY2361	GFP-Atg8	NSY992, GFP- ATG8::URA3	This study
	trs130ts		
YLY2741	GFP-Atg8	NSY991,	This study
	RFP-Ape1	GFP-Atg8::URA3,RFP-APE1::LEU2	
	TRS130		
YLY2742	GFP-Atg8	NSY992,	This study
	RFP-Ape1	GFP-ATG8::URA3,RFP-APE1::LEU2	
	trs130ts		
YLY4081	TRS130	YLY2741, trs85∆::Kan	This study
	$trs85\Delta$		
YLY4083	trs130ts	YLY2742, trs85∆∷Kan	This study
	$trs 85\Delta$		
YLY3661	TRS130	YLY2741, atg1∆::Kan	This study
	$atgl\Delta$		
YLY3662	trs130ts	YLY2742, atg1∆::Kan	This study
	$atgl\Delta$		
NSY1176	Trs130-HA	MATα leu2-3,112 his3-Δ200 trp1-Δ901	(2)
	Trs120-myc	lys2-801 suc2-∆9 ura3–52	
		TRS130-HA::HIS3MX6 TRS120-myc::TRP1	
NSY1177	trs65ts	NSY1176, trs65∆∷Kan	(2)
YLY2483	GFP-Atg8	NSY1176, GFP-ATG8::URA3	This study
	TRS65		

YLY2484	GFP-Atg8 trs65ts	NSY1177, GFP-ATG8::URA3	This study
YLY2851	GFP-Atg8	NSY1176	This study
1212001	RFP-Apel	GFP-ATG8::URA3.RFP-APE1::LEU2	Tino Study
	TRS65		
YLY2852	GFP-Atg8	NSY1177,	This study
	RFP-Ape1	GFP-ATG8::URA3,RFP-APE1::LEU2	5
	trs65ts		
YLY4504	GFP-Atg8	YLY2851, tca17∆::Kan	This study
	RFP-Ape1		
	tca17ts		
YLY3362	TRS130	YLY2741, <i>atg11∆::Hyg</i>	This study
	atg11 Δ		
YLY3365	trs130ts	YLY2742, <i>atg11∆∷Hyg</i>	This study
	$atg11\Delta$		
YLY3331	TRS130	YLY2741, atg17 Δ ::Kan	This study
	$atg17\Delta$		
YLY3334	trs130ts	$YLY2/42$, $atg1/\Delta$::Kan	This study
VI V2126	$atgI/\Delta$	VI VOTAL Star 5 August	This study.
YLY3120	1KS130 ata54	$Y L Y 2/41, atg 5 \Delta$:: Hyg	This study
VI V3127	$uig_{J\Delta}$	VI V2742 $ata5 A \cdots Hva$	This study
1113127	ata5A	$1 \pm 12742, ug 5211yg$	This study
YLY4205	TRS130	$YI Y2741 atgl 3 A \cdots Hvg$	This study
1211205	$Atg 13\Lambda$	1212/11, <i>utg152</i> 19g	This Study
YLY4208	trs130ts	YLY2742. atg13A::Hvg	This study
	atg13 Δ	,,	5
YLY4068	TRS130	YLY2741, <i>atg9∆∷Hyg</i>	This study
	Atg9Δ		-
YLY4071	trs130ts	YLY2742, <i>atg9∆∷Hyg</i>	This study
	atg9 Δ		
YLY3212	TRS130	YLY2741, <i>atg14∆::Hyg</i>	This study
	atg14 Δ		
YLY3213	trs130ts	YLY2742, <i>atg14∆∷Hyg</i>	This study
	$atg14\Delta$		
YLY4462	TRS33	<i>MAT a ura3-52 leu2-3,112 trp1-Δ901</i>	This study
		$lys2-801$ his3- $\Delta 200$, TRS130-HA::HIS3MX6,	
X / X X / A / A		GFP-Atg8::URA3,RFP-APE1::LEU2	T1 · 4 1
YLY4464	$trs33\Delta$	YLY4462, <i>trs33Δ</i> :: <i>Hyg</i>	This study
YLY4431	TRS120	SEY6210, TRS130-mvc::TRP1 +	This study
-	-	pRS425-YPT31,	· J
		GEP_Ata8IIRA3 REP_APE1IFII2	

YLY4021	trs120∆	SEY6210, <i>trs120::HIS3MX6</i> <i>TRS130-myc::TRP1</i> + pRS425-YPT31,	This study
VI V2705	Atro CED	GFP-Atg8::URA3,RFP-APE1::LEU2	This study
YLY2/05	Atg9-GFP	N5Y991, ATCO 2VCEDUBA2 DED ADE1LEU2	This study
	TDS120	AIG9-3AGFP:::URA3,KFP-APE1::LEU2	
VI V2704	Atao GEP	NSV002	This study
1 L 1 2 / 04	RFP_Anel	$ATG_0_3YGED \cdots IIR A3 REP_APE1 \cdots IEI 12$	This study
	trs 1 30ts	1109-5X0110K15,K11-711 E1EE02	
YLY2978	Atg9-GFP	YLY2705 atg1A··Kan	This study
1212/10	RFP-Anel	1112/03, ug12Kun	This study
	TRS130		
	$atgl\Delta$		
YLY2979	Atg9-GFP	YLY2704, atg1∆::Kan	This study
	RFP-Ape1		-
	trs130ts		
	$atgl\Delta$		
YLY2710	Atg9-GFP	NSY1176,	This study
	RFP-Ape1	ATG9-3XGFP::URA3,RFP-APE1::LEU2	
	TRS65		
YLY2870	Atg9-GFP	YLY2710, trs65∆::Hyg	This study
	RFP-Apel		
XII XIOTAC	trs65ts		TT1 · / 1
YLY2/46	Atg9-GFP	YLY2/10, atg1 <i>A</i> ::Kan	This study
	TDS65		
	IKS05		
VI V2872	$aig1\Delta$ Δt_{0}	VI V2746 $trs65 A \cdots H v \sigma$	This study
1112072	RFP-Anel	1212740, trs052tryg	This study
	trs65ts		
	$atg 1\Lambda$		
YLY2540	TRS130	NSY991, SEC7-DsRed	This study
	Sec7-DsRed		
YLY2541	trs130ts	NSY992, SEC7-DsRed	This study
	Sec7-DsRed		-
YLY2817	Sec7-DsRed	YLY2540, ATG9-3XGFP::URA3	This study
	Atg9-3XGFP		
	T RS130		
YLY2818	Sec7-DsRed	YLY2541, ATG9-3XGFP::URA3	This study
	Atg9-3XGFP		
	trs130ts		

YLY3091	Sec7-DsRed Atg9-3XGFP TRS130	YLY2817, atg1∆::Kan	This study
YLY3092	$atg1\Delta$ Sec7-DsRed	YLY2818, <i>atg1∆∷Kan</i>	This study
	trs130ts $atg1\Delta$		
YLY2914	Sec7-DsRed GFP-Atg8 TRS130	YLY2540, GFP-ATG8::URA3	This study
YLY2917	Sec7-DsRed GFP-Atg8	YLY2541, GFP-ATG8::URA3	This study
YLY3337	<i>trs130ts</i> Sec7-DsRed GFP-Atg8	YLY2914, <i>atg1∆∷Kan</i>	This study
YLY3339	TRS130 <i>atg1∆</i> Sec7-DsRed	YLY2917, atg1∆::Kan	This study
	GFP-Atg8 trs130ts		, ,
YLY3359	atg12 TN124	MATα leu2-3,112 trp1 ura3-52 pho8::pho8Δ60 pho13::LEU2	(3)
YLY3799	TRS130 (TN124)	TN124, HIS3A::Hyg, TRS130-HA::HIS3MX6	This study
YLY3800	<i>trs130ts</i> (TN124)	TN124, $HIS3\Delta$:: Hyg , $trs130$ -(33 aa truncation)- HA^{ts} :: $HIS3MX6$	This study
YLY3956	$atg1\Delta$ (TN124)	YLY3799, <i>atg1∆::Kan</i>	This study
YLY4060 XLV4140	TRS65 (TN124)	TN124, HIS3A::Hyg, TRS130-HA::HIS3MX6 TRS120-myc::TRP1	This study
YLY4140 NSV1081	(TN124)	$Y \perp Y 4060, trsos \Delta$: Kan MAT a ura $3.52 \perp au 2 his 3$	(2)
NSY1082	vptlts	MAT a ura3-52 Leu2 his3 MAT a ura3-52 Leu2 his3 vpt1A136D	(2)
YLY2366	GFP-Atg8	NSY1081, GFP-ATG8::URA3	This study
YLY2367	YPT1 GFP-Atg8 <i>ypt1ts</i>	NSY1082, GFP-ATG8::URA3	This study

YLY2417	GFP-Snc1	MAT a leu2-3,112 lys2-801	TT1 · / 1
	Sec7-DsRed	TRS130-HA::HIS3MX6, GFP-Snc1::URA3,	This study
		SEC7-DsRed	
YLY2418	GFP-Snc1	MAT a leu2-3,112 lys2-801 trs130-(33 aa	T
	Sec7-DsRed	truncation)-HA ^{ts} ::HIS3MX6,	This study
	trs130ts	GFP-Snc1::URA3, SEC7-DsRed	
RSY367	SEC7	MATa ade2-1 ura3-1 his3-11,15	D C 1 1 11
		leu2-3,112 trp1-∆1 can1-100	R. Scheckman lab
RSY301	sec7-4	MATa ura3-1 his3-11,15 Leu2-3,112	R. Scheckman lab
		$trp1-\Delta l$	
YLY4478	SEC7	RSY367, TRS130-HA::HIS3MX6,	This study
	GFP-Atg8	GFP-ATG8::URA3	
YLY4479	trs130ts	RSY367, trs130-(33 aa truncation)-	This study
	GFP-Atg8	HA ^{ts} ::HIS3MX6, GFP-ATG8::URA3	
YLY4480	sec7-4	RSY301, TRS130-HA::HIS3MX6,	This study
	GFP-Atg8	GFP-ATG8::URA3	
YLY4481	sec7-4	RSY301, trs130-(33 aa truncation)-	This study
	trs130ts	HA ^{ts} ::HIS3MX6, GFP-ATG8::URA3	
	GFP-Atg8		
YLY40	NSY128	MATα ade2 his3-200 leu2-3,112 lys2-801	(4)
		ura3-52	
YLY44	NSY340	MATα leu2-3,112 lys2-801 ura3-52	(4)
	ypt31 Δ	<i>ypt31</i> Δ::HIS3 ypt32A141D	
	ypt32ts		

B. Plasmids

Plasmid	Alias	Genotype	Source
p1K-GFP-	pYL233		(5)
ATG8-406			
RFP-APE1	pYL238		(6)
-305			
ATG9 -3 XG	pYL242		(7)
FP-PG5			
Cu-Cherry-	pYL254		(8)
ATG8-415		_	
pNS180	pRS425	2μ , <i>LEU3</i> , Amp ¹	(9)
pNS781	Ypt31	pRS425-YPT31	(1)
pYL316	Ypt31S	pRS425-YPT31 S27N	This study
pYL313	Ypt31Q	pRS425-YPT31 Q72L	This study
pYL317	Ypt1	pRS425-YPT1	This study
pYL120	pRS426	2μ, URA3, Amp ^r	(9)

pYL335		pRS426-Ypt31	This study
pYL338		pRS426-YPT31 S27N	This study
pYL336		pRS426- <i>YPT31</i> Q72L	This study
pYL339		pRS426- <i>YPT1</i>	This study
pYL151	YEp351	2µ, <i>LEU</i> 2	(10)
pYL152		YEp351-TRS130	This study
pYL283		YEp351- <i>YPT32</i>	This study
pYL225		YEp351-TRS65	This study
pYL342		YEp351-TCA17	This study

Supplementary Materials and Methods

Growth assay of genetic interaction

For genetic interaction assays, cultures were grown overnight at 26°C in minimal medium (SD-Leu), normalized to the same density and spotted onto SD-Leu plates in serial dilutions of 1:10. Plates were incubated at various temperatures for different numbers of days and photographed.

References

- Sciorra VA, Audhya A, Parsons AB, Segev N, Boone C, Emr SD. Synthetic genetic array analysis of the PtdIns 4-kinase Pik1p identifies components in a Golgi-specific Ypt31/rab-GTPase signaling pathway. Mol Biol Cell 2005;16(2):776-793.
- Liang Y, Morozova N, Tokarev AA, Mulholland JW, Segev N. The role of Trs65 in the Ypt/Rab guanine nucleotide exchange factor function of the TRAPP II complex. Mol Biol Cell 2007;18(7):2533-2541.
- 3. Noda T, Matsuura A, Wada Y, Ohsumi Y. Novel system for monitoring autophagy in the yeast *Saccharomyces cerevisiae*. Biochem Biophys Res Commun 1995;210(1):126-132.
- 4. Jones S, Jedd G, Kahn RA, Franzusoff A, Bartolini F, Segev N. Genetic interactions in yeast between Ypt GTPases and Arf guanine nucleotide exchangers. Genetics 1999;152(4):1543-1556.
- 5. Xie Z, Nair U, Klionsky DJ. Atg8 controls phagophore expansion during autophagosome formation. Mol Biol Cell 2008;19(8):3290-3298.
- 6. Shintani T, Reggiori F. Fluorescence microscopy-based assays for monitoring yeast Atg protein trafficking. Methods Enzymol 2008;451:43-56.
- 7. Monastyrska I, He C, Geng J, Hoppe AD, Li Z, Klionsky DJ. Arp2 links autophagic machinery with the actin cytoskeleton. Mol Biol Cell 2008;19(5):1962-1975.
- 8. Mari M, Griffith J, Rieter E, Krishnappa L, Klionsky DJ, Reggiori F. An Atg9-containing compartment that functions in the early steps of autophagosome biogenesis. J Cell Biol 2010;190(6):1005-1022.
- 9. Christianson TW, Sikorski RS, Dante M, Shero JH, Hieter P. Multifunctional yeast high-copy-number shuttle vectors. Gene 1992;110(1):119-122.
- Yamamoto K, Jigami Y. Mutation of TRS130, which encodes a component of the TRAPP II complex, activates transcription of OCH1 in *Saccharomyces cerevisiae*. Curr Genet 2002;42(2):85-93.

Figure S1. Cvt pathway and starvation-induced autophagy are impaired in other TRAPP II-specific subunit mutants at the restrictive temperature. (A) Atg8 and Ape1 localization in trs65ts and tca17ts mutant cells. WT-II (for indicating TRAPP II-specific subunits Trs130 and Trs120 are tagged as Trs130-HA Trs120-myc) and mutant cells were tagged using GFP-Atg8 and RFP-Ape1 integration plasmids. Cells were grown and treated as in Figure 1A. GFP-Atg8 morphology of WT-II and *tca17ts* cells starved for 0.5 hour at 37°C is at right. Arrowheads indicate colocalization of Atg8 and Ape1. Bar, 5 µm. The percentage of cells with Atg8 dots was guantitated and presented as in Figure 1A. (B) Ape1 maturation was blocked under non-starvation conditions and GFP-Atg8 degradation was reduced under starvation conditions in trs65ts mutant cells at 37°C. Cells grown as in (A) but in YPD were subjected to immunoblot assay, quantitated and presented as in Figure 1B. II for WT-II as in (A). (C)-(F): GFP-Atg8 localization in the *trs120* Δ mutant (*trs120* Δ +Ypt31) (C) and the *trs33* Δ mutant (trs33∆ in Trs130-HA background) (Trs33 was a candidate for TRAPP II-specific subunit in this study) (E); immunoblot assay for autophagy defects in $trs120\Delta$ mutant (D) and $trs33\Delta$ mutant (F). Experiments were done as in (A) and (B).

Figure S2

% cells with Atg8 dot

B. SD-Ura, 37°C

lra,	37	°C DIC	Atg8	Ape1	merge	100.0 75.0 50.0 25.0 0.0	
atg5∆	TRS130		6 6 6 6 6 6 6 6				
	trs130ts		000		000	H	
13∆	TRS130						
atg	trs130ts			•			
atg9∆	TRS130		1999 1999				
	trs130ts						N
atg14∆	TRS130		000		600	- 	
	trs130ts			•			

Figure S2. Localization of Atg8 in *trs130ts* mutants with deletion of *ATG* genes without starvation. (A) Multiple GFP-Atg8 dots were formed in *trs130ts atg1* Δ without starvation at the restrictive temperature; this was rescued by Trs130. Cells grown in rich medium (YPD or SD-Leu) to mid-log phase at 26°C were treated as in Figure 1A for non-starvation and stained with FM4-64 during the last hour to detect the vacuole. Bar, 5 µm. (B) Yeast strains were grown and treated as described in Figure 3B except that incubation was in SD-Ura for 1.5 hours at 37°C without starvation. Cells were examined by live microscopy imaging for changes in GFP-Atg8 and RFP-Ape1. Bar, 5 µm. The percentage of cells with Atg8 dots was quantitated and presented as in Figure 1A.

Figure S3

% cells with ≥3 dots

B. SD-N

Figure S3. Anterograde transport of Atg9 to the PAS is altered in *trs65ts* mutant cells at the restrictive temperature. WT and *trs65ts* mutant cells tagged with Atg9-3XGFP and RFP-Ape1 in an *atg1* Δ background were incubated as described in Figure 4 and examined for fluorescence. (A) Non-starvation. (B) Starvation. Bar, 7 µm. Data are presented as in Figure 4. Asterisks indicate P < 0.001 as highly significant.

Figure S4. Changes in autophagic flux in some TRAPP II-specific subunit mutants and suppression of growth defects in mutants by Ypt31. (A) Pho8 Δ 60 activity in *trs130ts* and *trs65ts* mutants. WT (TN124) and the *atg1* Δ (in TRS130 background) strains were used as positive and negative controls. All cells were treated as in Figures 1B except that 36.5°C was used to guarantee that the *trs130ts* cells would be viable after treatment since the mutants in the TN124 background were more temperature sensitive than the strains in Figures 1A and S1A. The *trs130ts* and *trs65ts* mutants were transferred from 36.5°C in SD-N to 26°C in SD-N for 2 hours recovery and designated SD-N R (2h). Pho8∆60 assay data are presented as in Figure 7B except with absolute values because of slightly lower Pho8 Δ 60 activity in *TRS130* than in TN124. Asterisks indicate P < 0.001 as highly significant. (B) The trs130ts and trs65ts mutants were viable after treatment at 36.5°C in SD-N for 2 hours. WT and the mutants incubated in SD-N at 26°C and 36.5°C for 2 hours were plated on YPD plates with tenfold serial dilution from top to bottom and grown at 26°C for 2 days. (C)-(E) Cells as in Figures 7 and S1 but without RFP-Ape1 tagging were transformed with the indicated plasmids to examine growth. Cells were spotted onto SD-Leu medium with tenfold serial dilution from top to bottom and grown at various temperatures. Ypt31 (WT and GTP-bound form) but not Ypt1 suppressed the growth defect of *trs130ts* mutant cells (C), *trs65ts* and *tca17ts* mutant cells (D), and *trs33* mutant cells (E) at 37°C. (F) The Ypt1 plasmid in (C)-(E) was used to overexpress Ypt1 in *vpt1ts* to confirm expression and function. Ypt31 served as a negative control. Growth was checked as in (C) and protein expression was examined as in Figure 7C.

Figure S5

A. SD-Leu

B. 37°C

TRS130

trs130ts

C. SD-Leu

Figure S5. Ypt32 fully suppresses growth and autophagy defects in *trs130ts* mutant cells, but TRAPP II subunits suppress *ypt31*/32ts growth defects weakly. (A) Trs130 and Ypt32 suppress the growth defect in *trs130ts* mutant cells at the restrictive temperature. Trs130 and Ypt32 in YEp351 were transformed into WT and *trs130ts* mutant cells tagged with GFP-Atg8 and grown as in Figure S4C. (B) Trs130 and Ypt32 suppressed the GFP-Atg8 transport defect in *trs130ts* cells. Yeast transformants as in (A) were investigated to determine whether Trs130 and Ypt32 suppressed the GFP-Atg8 transport defect in trs130ts cells in synthetic minimal medium (SD-Leu) or starvation medium (SD-N) at the restrictive temperature. Bar, 5 µm. The percentage of cells with Atg8 dots was quantitated and presented as in Figure 1A. (C) TRAPP II-specific subunits (Trs130, Trs65 and Tca17) weakly suppressed the growth defect in *ypt31*/*32ts* mutant cells at the non-permissive temperature (34°C). Trs130, Trs65 and Tca17 in YEp351 (all are functional) were transformed and grown as in Figure S4C. (D) TRAPP II-specific subunits (Trs130, Trs65 and Tca17) did not obviously suppress the GFP-Atg8 transport defect in ypt31 Δ /32ts cells. Yeast transformants as in (C) were investigated to determine whether TRAPP II-specific subunits suppressed the GFP-Atg8 transport defect in *ypt31*^(32ts) cells in synthetic minimal medium (SD-Leu) at a growth suppression temperature (34°C) or in starvation medium (SD-N) at a temperature at which GFP-Atg8 transport starts to show defects (36°C). Bar, 5 µm. The percentage of cells with Atg8 dots was guantitated and presented as in Figure 1A.