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I. MECHANISMS TO IMPEDE FINGERING  
 
A. Stem cell niche’s regulation of its own cell cycle 

The regulation of the longevity and aging of stem cells is important for the aging process for 
both tissues and organisms since the efficiency of stem cell renewal and the coordination of 
molecular signaling within a tissue deteriorate over long periods of time (1). Specifically, this 
regulation must balance the ability for the tissue to regenerate with the potential for cancer and 
cell overgrowth (2). Recent experimental studies reveal that the stem cell niche plays a critical 
role in regulating cellular aging in adult stem cells by maintaining stem cells in a quiescent, slow 
cycling state and modulating gene expression when they are in the niche (3, 4). 

In order for the stem cell niche to regulate its own cell cycle lengths, we allow stem cells 

to secrete a given morphogen M  that slows their proliferation rates, 0  (see SI.B). Possible 

candidates to play the role of M  could be diffusible members of the Hedgehog signaling family, 
which have been identified experimentally to assume such a role in the hematopoietic system (5) 
and also have been strongly linked to basal cell carcinoma (6). Incorporating M into our free-
form niche model by inhibiting ν0 provides us with  
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Here, MD  represents the diffusion coefficient of M ; 2  is the rate at which stem cells produce 

M ; degm  is the degradation rate of M ; 0  , 1/ M , and k  are thresholding, EC50, and hill 

exponent values for the functional form of 0 .  Imposing the permeability of the basal lamina 

and the closedness of the apical surface as boundary conditions yields, 
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The permeability coefficient for M  is given by M . Through this construction, M  is both 

secreted only by stem cells in a niche along the basal lamina while also absorbed along the basal 

lamina. Here, the parameter M  corresponds to the strength of the inhibition of M  onto 0 . 

(Eq. 1) 

(Eq. 2)



Simulations show that when fingers form in a free-form niche while M  is secreted to 
slow the cycling of stem cells, M  accumulates along the basal lamina where stem cells are 
present and is especially high in the fingers of the tissue (Fig. S3A). As a result, the proliferation 

rate of stem cells is noticeably slowed in these regions, evidenced by lower 0  values. Beginning 

with a spatially varying initial morphology, fingering can be delayed or entirely impeded by the 

action of M . As M  increases, hT  decreases and, when M  reaches 45, hT  approaches zero 

over time (Fig. S3B). Also evident from the simulations is that when the length of the stem cell 
cycle is increased by M , tissue stratification and overgrowth are delayed while mean tissue size 

is decreased. For example, when 40M  , it takes until approximately 100t   for the tissue to 

reach its largest size, which is more than five times longer than the case in which 0  is 

uninhibited by M . Overall, the stem cell niche's regulation of its own proliferation rates 
provides one mechanism to delay or prevent morphological distortions of the tissue. 

B. Pressure-induced differentiation of stem cells 

The external physical environment of a stem cell that the niche provides plays a crucial role in 
determining cell fates; stem cells often have a multipotency to differentiate in a number of ways 
as dependent upon their physical environment (7). Recently, signal transduction networks in 
stem cells, such as the YAP pathway (8), have been shown to play a role in 
mechanotransduction, the process in which cells biochemically interpret mechanical stimuli. 
External mechanical stress and pressure from outside the cell provide stimuli to prompt the 
differentiation of stem cells in vitro (9, 10).  

Since internal tissue pressure is accounted for as one of the ways our models capture 
tissue mechanics, we can study test the effects of pressure-induced differentiation on a multistage 
cell lineage by allowing the internal tissue pressure to promote stem cell differentiation by 

inhibiting the stem cell self-replication probability 0p . Due to the fact that the variable 

describing the pressure, P , assumes both positive and negative values, hill functions are 
inappropriate to model a feedback response. Instead, we choose to use an arctangent to describe 

a response in which 0p  is inhibited by both the local concentration of A  and the local pressure, 
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Here, P  describes the responsiveness of the feedback from P  and /P P   is the corresponding 

EC50 value. 
Incorporating pressure-induced differentiation on the fingering of a free-form niche 

exhibits a general similarity to the hindrance of fingering observed by the stem cell niche's 
regulation of its own cell cycle times. When the sensitivity of stem cell differentiation to internal 

(Eq. 3)



tissue pressure is increased by smaller P  values, hT  attains lower values and mean tissue size is 

decreased (Fig. S3C). When P  is taken to be small enough (~4), fingering can be prevented 

entirely, and hT  approaches zero while the tissue size has halved from the case in which pressure 

has no effect on differentiation.  

C. A curvature dependence of the basal lamina’s permeability 

A key difference between the effects of the stem cell niche slowing its own cell cycle 
length and pressure-induced differentiation is that the former appears to delay fingering by 
decreasing the rate of stratification while the latter appears to slow the timescale of the fingering 

process itself. This conclusion is first apparent in slopes of hT  curves for the pressure-induced 

differentiation case, which are less steep than the cell cycle regulation case. It is also evident that 
pressure-induced differentiation prompts earlier stratification and overgrowth, which contrasts 

with the effects of the inhibition of 0  by M , which delay stratification. In both cases, the 

system does not show evidence of reaching a steady state. We find that a possible mechanism to 
reach a stable steady state with a distorted free-form niche morphology is to allow the 
permeability of the basal lamina to depend upon its own curvature (Fig. S4). For this case, stable 
fingering occurs but with less prominent distortion at a steady state than that comparable to 
experimentally observed morphological distortions caused by rete pegs and palisades of Vogt. 

 

 



 

II. COMPUTATIONAL METHODS 
 
A. Methods for interfacial motion 
 
In order to simulate stem cell tissue models presented here, the growing domain is transformed to 
the unit square, and interfacial motion is accounted for explicitly (11). We use the following 
coordinate system on our computational domain 
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where ( ,1, ) ( , )F X h x t   and ( ,0, ) 0F X   . The transformed derivatives then become 
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Then, the resultant equations are discretized in space using high-order central difference 
approximations. In particular, fourth-order central difference approximations for the derivatives 
of h  and P  in the X -direction are implemented to achieve a necessary accurate treatment of 
the movement of the boundary due to the presence of second derivatives of h  in   and g
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A second-order TVD Runge Kutta is implemented for temporal integration. Discretized forms 
are solved using multigrid solvers. 
 
B. Simulation details 
 
For spatiotemporal simulations, a 129 129  grid size is implemented for all simulations along 
with a time-step of   t  2  103 . Resolution checks were performed on 65 65  and 257 257  

(Eq. 4)

(Eq. 5)

(Eq. 6)



grid sizes. Calculations were carried out using FORTRAN 77 with plots generated by MATLAB 
R2009a (The MathWorks, Natick, MA). 
 
C. Explicit form for the curvature of the dynamic boundary 
 
The curvature,  , of the tissue’s dynamic boundary is given in terms of the derivatives of h  by 
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D. Definition and computation of stem cell niche size 
 
In this section, we define the size of the stem cell niche, ( )x , that forms along the basal lamina 
in our models for stratified epithelial tissues at a fixed time. First, we define the stem cell niche 
to be a connected region where the value of 0C  is above 0 1max{min{ ( ,0), ( , )}}C x C x h  for a 

given θ between 0 and 1. Next, we define the function   for a stratified tissue by 

     0 0 0( ) max : ( , ) max min ( ,0) , min ( , ) .x y C x y C x C x h     

For a rigid niche, we take    (x,t)  (x,t)  as the size of the stem cell niche. We define the stem 
cell niche size for the free-form niche by 

   0 0 0( ) , ( ) , ( )x x x x h x     

where  , ( )x h x  is the point where the line spanned by the vector normal to   at 0x  intersects 

with h.  Specifically, this line is given in slope-intercept form by, 
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Through this definition, the stem cell niche size does not necessarily depend on how many stem 
cells reside in the tissue but more on how the present stem cells are distributed within the tissue. 

To compute  , ( )x h x , let us first assume that our solution x  is in the interval  1,i ix x   

on our computational grid.  We can then use linear interpolation to write, 
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where ( )j jh h x .  Then we can solve for x  as follows, 
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(Eq. 7)

(Eq. 8)

(Eq. 9)
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So, to computationally attain x , one can search through all i on the grid to find the unique case 

when 1
i

i ix x x    and take ix x .  One can use a similar linear interpolation to search on the 

subintervals of the y-grid for a fixed x to compute  . 



III. MATHEMATICAL ANALYSIS OF MORPHOGEN DISTRIBUTION WITH A 
FREE-FORM NICHE 

 
In this section, we analytically explore how convexity of the basal lamina in a free-form 

niche may affect the distribution of the morphogen A  that is produced in the epithelium and 
diffuses through the basal lamina. 
 We begin with the partial differential equation on  , describing the quasi-steady state 
approximation for A , 
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with periodicity in the x -direction and all parameters taken to be positive.  By the Divergence 
Theorem, we have 
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where H is the two-dimensional curve described by h.  Substituting for the Laplacian of A yields 

  


A
D

A
Ads  

j
C

j
 a

deg
A

j0

2








dV

 .
H  

Now, let us suppose that all cell types produce A  at the same rate,  , as our computational 

simulations do. Then 
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Assume that h takes the form of a constant perturbed by a sinusoid: h(x)  h  Bsin 2kx    
where 0 B h  .  Then   is independent of B  while 
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This indicates that the average value of 1A  over 1H  is less than the average value of 2A  over 2H .  

(Eq. 14)
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On the other hand, if 
  

A
1
dV

1
  A

2
dV

2
 , then we clearly see that the average value of 1A  over 

1  is less than the average value of 2A  over 2 . So, we can either state that 1A  has a lower 

average value along the basal lamina than 2A  or that there is less total A in 1  than in 2 .  This 

indicates that a greater convexity of the basal lamina may, in some fashion, imply less A either at 
the base of the tissue or throughout the entire tissue. 
 



 

IV. PARAMETERS AND INITIAL CONDITIONS USED FOR ALL FIGURES 
 
A. Initial conditions 
 
For speed in reaching a steady state and to prevent rampant overgrowth, we begin simulations 
with a uniform 10 percent stem cell density and 90 percent TD cell density (i.e. 0 0.1C  , 1 0C  , 

and 2 0.9C  ) along with an initial tissue morphology described by h(x,t  0)  0.1  unless 

specified otherwise. 
 
B. Parameters 
 
Unless stated otherwise, the following set of unitless parameters are used for all simulations in 
Figures 2, 3, 5, and 6: 

2
2 10d   per cell cycle 

a
deg

 g
deg

 m
deg

 101  s-1 

1
0 1 2 1 2 0 10             s-1μM 

0 0   s-1μM 

D
A
 D

G
 103  mm2s-1 

410MD   mm2s-1 


A
 

G
 10  mm-1 

1.1A   μM-1 

5G   μM-1 

30P   μM-1 

p
0
 0.7, p

1
 0.4,  


0
 

0
 

1
 1 per cell cycle 

  4 103, K  103  
 

which are very similar to those used in (12). 
 
The following set of parameters is used for Figure 4: 

2 0.2d   per cell cycle 

a
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 D
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 102  mm2s-1 
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G
 102  mm-1 



3A   μM-1 

2G   μM-1 

p
0
 0.75, p

1
 0.45,  

0 1 1    per cell cycle 

  5103, K  103  
All hill exponents are taken to be 2 throughout all simulations. 
 
 
C. Further explanation of tissue movement at the fixed boundary 
 

The boundary condition for ( , 0, ) 0
P

x y t
y


 


 at the fixed boundary 0y   requires that the 

vertical component of the tissue velocity there is zero, w(x, y  0,t)  0 . However, there is no 
restriction of the horizontal movement of the tissue along this boundary, meaning no restriction 
is placed on u  at this boundary.  This boundary condition differs from a “no-slip” boundary 
condition in which both u  and  w  would be required to be zero at the boundary 0y  .   

The models presented here allow for horizontal movement along the fixed boundary since 
there is often spatially nonuniform influx and outflux along this boundary. In some rigid niche 
simulations (Fig. 2A-D for example), stem cells and TA cells self-renew more often along the 
basal lamina where the basal lamina is more permeable. At the same time, TD cells may also be 
more populous along some regions of the basal lamina than others, causing a spatially 
nonuniform cell death rate there. Thus, as a result, the influx and outflux of cells varies spatially 
along the basal lamina for the rigid niche, which would result in cell movement in the horizontal 
direction along the basal lamina. So, the boundary condition of no vertical movement along 

0y   without imposing a no-slip boundary maintains the geometry of the tissue while enabling 
necessary cell movement in the horizontal direction. 



 

D. Perturbations for figures from main text 
 
An initial perturbation to tissue morphology for Figure 2:  

  
h(x,t  0)  0.1 1 0.25cos(4 x)  
   Th

(t  0)  0.4  

A spatial perturbation to the permeability of the basal lamina for Figure 2: 

 
  


A
(x)  

A
(1 0.25cos(4 x)), 

G
(x)  

G
(1 0.25cos(4x))  

 
An initial perturbation to tissue morphology for Figure 3: 
  ( , 0) 0.1 1 0.025cos(4 )h x t x    

    Th
(t  0)  0.0488  

 
An initial perturbation to tissue morphology for Figure 4: 
  ( , 0) 0.1 1 0.025cos(2 )h x t k x    

    Th
(t  0)  0.0488  

 
An initial perturbation to tissue morphology for Figure 5: 
  ( , 0) 0.1 1 0.025cos(2 )h x t k x    

    Th
(t  0)  0.0488 

Distinct spatial perturbations to components of the cell lineage for Figure 5: 
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A spatial perturbation to the permeability of the basal lamina for Figure 5: 

  


A
(x)  

A
(1 0.025cos(4 x)), 

G
(x)  

G
(1 0.025cos(4 x))  

 
An initial perturbation to tissue morphology for Figure 6: 
  ( , 0) 0.1 1 0.025cos(4 )h x t x    

    Th
(t  0)  0.0488 
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VI. SUPPORTING FIGURES 

 
 

 
FIGURE S1: A uniform, homeostatic steady state with a rigid niche. (A) Approximate 
steady state distributions for stem, TA, TD cells, and the regulatory molecules A  and G  for 
rigid niche simulation with homogeneity in the x -direction. (B) Mean tissue size over time for 
three cases: 1) homogeneity in the x -direction with no spatial perturbations (NP) ; (2) an initial 
perturbation to tissue morphology ( , 0) 1 0.25cos(4 )h x x  ; and (3) an initial condition of cell 

distributions given by 0 ( , , 0) 0.25(1 cos(4 )cos(4 / ))C x y t x y h    , 

1( , , 0) 0.25(1 sin(4 )sin(4 / ))C x y t x y h    , and 2 0 1( , , 0) 1 ( , ,0) ( , ,0)C x y t C x y C x y    . 

Simulations for three cases appear to approach the same steady state. (C) Dynamics of the 
distribution of stem cells for case 2. (D) Approximate steady state cell volume fraction 
distributions for case 2. 

 



 

 

FIGURE S2: Dynamics of the free-form niche. (A) Mean tissue sizes for rigid and free-form 
stem cell niches with spatial homogeneity in the x -direction. (B) Distributions of TA and TD 
cell volume fractions in a distorted tissue morphology at time 250t  . 

 
 



 

 
 
FIGURE S3:  The stem cell niche’s regulation of its own cell cycle times and pressure-
induced differentiation of stem cells can impede distortion of epithelial morphologies with a 
free-form niche. Simulation details are listed in SIV. (A-B) Simulations incorporating the 

inhibition of the proliferation rate 0  by the diffusible molecule M  produced by stem cells. (A) 

Distributions of stem cells, M , and 0  at time 250t   for 20M  μM-1. (B) Variation in tissue 

size, hT , and mean tissue size over time for varying M -values. (C) Variation in tissue size, hT , 

and mean tissue size over time for simulations incorporating the inhibition of the replication 

probability 0p  by the local internal pressure with varying P -values. ‘NI’ denotes cases with no 

inhibition. 



 

 

FIGURE S4: Stabilizing an undulated morphology by a curvature dependence of the basal 
lamina’s permeability Simulation details are listed in SIV. The initial tissue morphology is 
described by ( , 0) 1 0.25cos(4 )h x x   with a free-form niche. The permeability of the basal 

lamina is assumed to take the form    A
(x)  

A
/ (1 (50 )2 ) . (A) Cell and regulatory molecule 

distributions at time 400t  . (B) Temporal dynamics of mean tissue size, h  , and variation in 
tissue size, hT . 

 
 
 


