Transfection of Streptococcus pneumoniae with Bacteriophage DNA

CONCEPCION RONDA,' RUBENS LOPEZ,' ALEXANDER TOMASZ,2* AND ANTONIO PORTOLES'

Instituto de Immunologia y Biologia Microbiana, Madrid, Spain,' and The RockefeUer University, New York, New York 10021²

Received for publication 14 December 1977

It was possible to transfect Streptococcus pneumoniae with DNA obtained from a newly isolated bacteriophage, diplophage-4 (Dp-4). Optimal frequency of transfection (0.9%) required the use of a nuclease-defective mutant; with wildtype bacteria, the transfection frequency was about 100-fold lower. Transfection requires physiological conditions that appear to be similar to the competent state needed for genetic transformation (A. Tomasz, J. Bacteriol. 91:1050-1061, 1966).

ization of pneumococcal bacteriophages (3, 8, 10, upper respiratory symptoms in the Ciudad Sanitaria
11, 13, 16) opened un the possibility of develop. La Paz, Madrid, Spain (by C. Fernandez). Details of 11, 13, 16) opened up the possibility of develop- La Paz, Madrid, Spain (by C. Fernandez). Details of ing a transfection system in this bectarium. The the isolation technique and the preparation and puriing a transfection system in this bacterium. The the isolation technique and the preparation and puri-
tication of phage have been published elsewhere (8,
experiments). usefulness of transfection systems for a variety $\frac{\text{nca}}{10}$ of genetic and physiological studies have been $\frac{10}{r}$. Preparation of DNA. A volume (1 to 5 ml) of amply demonstrated in the work with Bacillus purified bacterionhage guanesian (containing about subtilis transfection (for a review, see reference $_{10^{11}}$ PFU/ml) in TBT solution (0.1 M Tris-hydrochlo-
20).
ride [pH 7.81-0.5 M NaCl-10 mM MgCl₂) was mixed

have recently reported successful transfection of distilled before use) saturated with TBT, and the
non-unococci. In this system superior transfect, mixture was shaken for 15 min at room temperature. pneumococci. In this system superior transfect-
ing obility was associated with a replicating in. After low-speed centrifugation, the upper aqueous ing ability was associated with a replicating in-
turn of the phase DNA (Borton and Cuild) phase was removed. This treatment was repeated termediate of the phage DNA (Porter and Guild, phase was removed. This treatment was repeated
Fed. Proc. 35:1595, 1976). Another unique fea-
twice. The pooled extracts were dialyzed for 2 days
against several liters of 0.1 ture was the apparent lack of saturation in the vield of transfection, even at very high concenyield of transfection, even at very high concen-
trations of the phage DNA (up to 400 μ g/ml) as previously described (19), was used as donor DNA trations of the phage DNA (up to $400 \mu\text{g/ml}$) as previously described (19), was used as donor DNA (W. R. Guild, personal communication). for transformation experiments. DNA concentration

In this communication we briefly describe a was determined from UV absorbance at 260 nm.
latively simple isolated phage diplophage-4 **Assay for infectious DNA and transformation** relatively simple isolated phage, diplophage-4 Assay for infectious DNA and transformation
(Dn 4) The oritical fector for obtaining role. procedures. Competent cells were prepared by stan-(Dp-4). The critical factor for obtaining rela-
timely high transfection for processing appears to dard methods used for S. pneumoniae (18); several of tively high transfection frequencies appears to
be the use of a nuclease-defective pneumococcus
methods used for S. pneumoniae (18); several of
methods and procedures used have been described. betheuse of a nuclease-defective pneumococcus previously (i.e., assay of transformants and viable cells
mutant. However, the nature of bacteriophage from Transfaction was tested as follows Cultures of also seems important, since DNA isolated from $\frac{1}{2}$ exponentially growing, competent wild-type or com-
two other members of the diplophage series (Dp- $\frac{1}{2}$ petent nuclease-deficient cells were diluted 1:10 with two other members of the diplophage series (Dp-
1 and Dp-2) had only a poor transfecting capac-
2 medium containing albumin and yeast extract (17), ity even when the nuclease-defective bacteria were used.

Bacterial strains. The wild-type pneumococci in a total of 7 ml of 0.8% agar), using the phage assay used in some experiments were derived from *Strepto*- described previously (10). Catalase (10³ to 2 \times 10³ used in some experiments were derived from Strepto-
coccus pneumoniae strain R36A (Rockefeller Univer- U/plate) was added to each assay mixture, and, after coccus pneumoniae strain R36A (Rockefeller Univer- U/plate) was added to each assay mixture, and, after sity stocks). The nuclease-deficient mutant (end 1-exo solidification of the soft-agar layer, each plate received 2) (7) was kindly supplied by S. Lacks (Brookhaven National Laboratory). This mutant is lacking about 90% of the wild-type nuclease activity and is capable of normal levels of genetic transformation.

described and characterized (8, 10, 13). Dp-2 and Dp-

Recent reports on the isolation and character- 4 were isolated from throat samples of patients with ation of pneumococcal bacteriophages (3, 8, 10, upper respiratory symptoms in the Ciudad Sanitaria

purified bacteriophage suspension (containing about). ride [pH 7.8]-0.5 M NaCl-10 mM MgCl₂) was mixed
20). Porter and Guild (Fed. Proc. 35:1595, 1976) with an equal volume of phenol (reagent grade, biwith an equal volume of phenol (reagent grade, bi-
distilled before use) saturated with TBT, and the for transformation experiments. DNA concentration was determined from UV absorbance at 260 nm.

[19]). Transfection was tested as follows. Cultures of C medium containing albumin and yeast extract (17), and then DNA was added at the appropriate concentration. This mixture was incubated at 30°C, without shaking, for various time periods, and the reaction was stopped by adding DNase $(10 \mu g/ml)$; Worthington, $2 \times$ MATERIALS AND METHODS stopped by adding DNase (10 μ g/ml; Worthington, 2x
recrystallized). Samples were taken and plated (each
Bacterial strains. The wild-type pneumococci in a total of 7 ml of 0.8% agar), using the pha solidification of the soft-agar layer, each plate received
an additional (5 ml) layer of 0.8% agar in C medium. This procedure was necessary to obtain a confluent lawn of bacteria and distinct plaques. Transfection frequency was calculated as the number of transfec-Phages. Bacteriophage Dp-1 has been previously tants per milliliter times 100 divided by the total scribed and characterized (8, 10, 13). Dp-2 and Dp- number of viable cells per milliliter.

Chemicals and enzymes. DNase I and RNase A 10^5 were purchased from Worthington Biochemicals Corp., Freehold, N.J. RNase was heated at 80°C for 15 min to destroy traces of contaminating DNase. prepared as recommended by Hotta and Bassel (6).

RESULTS AND DISCUSSION $\leq 10^{6}$

Pronase, B grade (Calbiochem, La Jolla, Calif.), was

prepared as recommended by Hotta and Bassel (6).

RESULTS AND DISCUSSION

Early attempts to obtain transfection in S.

pneumoniae using DNA from Dp-1 (the first

bacte Early attempts to obtain transfection in S. pneumoniae using DNA from Dp-1 (the first bacteriophage of the diplophage series) were unsuccessful. We have recently isolated and purified three additional pneumococcal phages (Dp- $\frac{1}{2}$ 10³ 2, Dp-3, and Dp-4), which differ from one another in size, host range, specificity for neutralizing antibodies, and capacity to transfect wildtype or nuclease-defective pneumococci. A more detailed characterization of these phages will be described elsewhere. In this communication, we $\begin{array}{ccc} \n\text{coly report on the relative transfecting abilities} \\
\end{array}$ only report on the relative transfecting abilities of the phage nucleic acids. TIME (MINUTES)

Only DNA extracted from Dp-4 could produce FIG. 1. Kinetics of the appearance of transfectants.
transfection (with a low frequency) in wild-type Phage DNA (15 μ g in 0.1 ml) was added to 1 ml of phage DNA, a high level of transfection (about $\frac{D1}{37^{\circ}C}$, and transfection was assayed. (0.9%) was achieved (Fig. 1). This finding is reminiscent of the greatly improved transfection $|0^{-}|$ frequencies observed with Escherichia coli spheroplasts prepared from mutants defective in the recBC nuclease (2). Pneumococci and phage

DNA (prepared from phage Dp-1, Dp-2, or Dp-

4) were mixed, and after different times, samples

were withdrawn, treated with DNase for 5 min

at 37°C, and assayed for PFU (Fi DNA (prepared from phage Dp-1, Dp-2, or Dp-4) were mixed, and after different times, samples DNA (prepared from phage Dp-1, Dp-2, or Dp-
4) were mixed, and after different times, samples
were withdrawn, treated with DNase for 5 min Link at 37°C, and assayed for PFU (Fig. 2). The at 37°C, and assayed for PFU (Fig. 2). The \vec{Q} 10^2 increase in the number of viable cells during the 60 min (maximal incubation time) ranged from 6×10^6 to 1.2×10^7 colony-forming units/ml. Using Dp-4 DNA, a maximum transfection frequency was reached after 55 min of incubation. Figure 3 illustrates that the latent periods of phage infection for Dp-1, Dp-2, and Dp-4 $\sum_{n=1}^{\infty} 10^{-3}$ range from 60 to 85 min. Thus, the relatively long incubation (55 min) with transfecting DNA does not run the risk of a superimposed phage infection cycle.

Figure 4 shows transfection as a function of the phage DNA concentration; saturation of the $\begin{array}{ccc}\n\sqrt[4]{\begin{array}{ccc}\n0&1&\text{d}\n\end{array}}\n\end{array}$ vield of transfection annears to occur at DNA $\begin{array}{ccc}\n0&20&40&60\n\end{array}$ yield of transfection appears to occur at DNA $\frac{O}{2Q}$ 20 40 concentrations ranging from 10 to 16 μ g/ml. TIME (min) concentrations ranging from 10 to 16 μ g/ml.

The shape of these curves suggests that more than one DNA molecule (or fragment) must
interact in a competent cell to produce one in-
the using DNA obtained from different phages. Compe-
that a variable of the appearance of transfectants
 $\frac{1}{2}$ and $\frac{1}{2}$ and of more DNA did not significantly affect the described in Fig. 1.

transfection (with a low frequency) in wild-type Phage DNA (15 μ g in 0.1 ml) was added to 1 ml of S. pneumoniae. Transfected cells started to ap-
S. pneumoniae. Transfected cells started to ap-
growth medium containing S. pneumoniae. Transfected cells started to ap-
pear after 50 min of incubation with competent clease-deficient (\bullet) cells at a concentration of 7×10^7 clease-deficient (\bullet) cells at a concentration of 7×10^7 wild-type cells. However, when the nuclease-de-colony-forming units/ml. At intervals, 0.1-ml samples fective mutant was used as a recipient of the of these cultures were added to 0.9 ml of medium with

rective mutant was used as a recipient of the DNase (10 μ g), incubation was continued for 5 min at

meract in a competent cent to produce one in-
fective center, as previously suggested for other
systems (for review, see 20). A plateau was
reached at 16 µg of DNA per ml, and the addition
different times, samples were ta different times, samples were taken and treated as

Dp-1, Dp-2, and Dp-4. The nuclease-deficient strain, fection with the phage 1.5 \times 10⁸ colony-forming units/ml was Pronase treatment. at 10^8 to 1.5×10^8 colony-forming units/ml, was Pronase treatment.
infected at a multiplicity of about 0.003 at 30°C; after Competence for transfection. The compeinfected at a multiplicity of about 0.003 at 30 $^{\circ}$ C; after 5 min the suspensions were diluted 10³ times in fresh

of transfection. Nuclease-defective pneumococci (7 \times 15 min. After that, 0.1 ml of the competent nuclease-
10⁷ colony-forming units/ml) were incubated with deficient strain and 0.8 ml of C medium containing 10^7 colony-forming units/ml) were incubated with deficient strain and 0.8 ml of C medium containing
various concentrations of DNA from phage Dp-1. Dp- albumin and yeast extract were added to the samples various concentrations of DNA from phage Dp-1, Dp-
2, or Dp-4 at 30°C for 55 min. DNase (10 μ g/ml) was added, and the number of infectious centers was was added to stop the reaction, determined. Symbols: $Dp-1$ (O): $Dp-2$ (O): $Dp-4$ (\times). treated as described in Fig. 1. determined. Symbols: $Dp-1$ (O); $Dp-2$ (\bullet); $Dp-4$ (\times).

number of transfectants. The highest transfec- 10^5 tion found for Dp-4 was about 10^4 PFU/ μ g of DNA. This value is in the range of those ob- \int_{1}^{∞} tained for *Staphylococcus aureus* (14) and strep-
tococci (9).
The level of transfection with Dp-4 DNA was
shout 100 times higher than that with DNA tococci (9).
The level of transfection with Dp-4 DNA was

about 100 times higher than that with DNA
extracted from Dp-2 and Dp-1. These results $\sum_{\substack{12 \text{odd } \\ 2 \text{even } \\ 6 \text{odd}}}$ for the level of transfection with Dp-4 DNA was
about 100 times higher than that with DNA
extracted from Dp-2 and Dp-1. These results
suggest that successful transfection in this syssuggest that successful transfection in this sys-
tem depends on both the use of the nuclease-
defective mutant and some special, as vet undetermined characteristics of the phage DNA. The sensitive dependence of infectivity on the \mathbb{R}^3 $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ structure of transfecting DNA has already been described in the case of coliphages (2).

/ Although a detailed analysis of the nucleic acid of Dp-4 has not yet been carried out, the $\frac{1}{30}$ $\frac{1}{60}$ $\frac{1}{30}$ $\frac{1}{60}$ $\frac{1}{60}$ $\frac{1}{60}$ results reported in Table 1 demonstrate that TIME (min) $\sum_{n=1}^{\infty}$ DNA is the active component of this phage. In $\sum_{n=1}^{\infty}$ contrast to the infectivity of diplophages, trans-FIG. 3. One-step growth curves of bacteriophages contrast to the infectivity of diplophages, trans-
0-1. Dp-2, and Dp-4. The nuclease-deficient strain. fection with the phage DNAs was insensitive to

5 min the suspensions were diluted 10^3 times in fresh tence for transfection through the growth curve C medium containing albumin and yeast extract at \overline{S} of \overline{S} preumoning was studied and compared C medium containing albumin and yeast extract at of S. pneumoniae was studied and compared the same temperature. At intervals, samples were $\frac{1}{2}$ with that obtained for transformation. At differthe same temperature. At intervals, samples were with that obtained for transformation. At differ-
withdrawn and assayed for infectious centers: (\bullet) and cell concentrations camples were taken and withdrawn and assayed for infectious centers: \bullet ent cell concentrations samples were taken and $Dp-4$; (\circ) $Dp-1$; (\circ) $Dp-2$. incubated with either 15μ g of Dp-4 DNA per ml 10⁶ (for 55 min at 30°C) or 1.0 μ g of DNA per ml carrying the streptomycin resistance marker (for 15 min at 30°C). The reactions were stopped with DNase (10 μ g), and the samples were treated as described in Materials and Methods. Figure 5 demonstrates that the peaks of com- 10^5 petence for both transfection and transformation are reached at a cell concentration of about $7 \times$ 107 colony-forming units/ml.

Table 2 summarizes a number of additional

infectivity of $Dp-4$ DNA^a

		Enzyme	Concn $(\mu$ g/ ml)	PFU/ml	% of remain- ing infectivity
		Control		7.7×10^{4}	100
		DNase	5		o
		DNase	5×10^{-1}		
		DNase	5×10^{-2}		0
		DNase	5×10^{-3}		
	۰	DNase	5×10^{-4}	2.2×10^{1}	0.03
2		RNase	50	7.4×10^{4}	100
O.I	100 ıо	Pronase	100	7.6×10^4	100

DNA (mcg per ml) a Samples (1 ml) containing 10 μ g of Dp-4 DNA
DNA concentration on the vield were treated with the different enzymes at 37°C over FIG. 4. *Effect of DNA concentration on the yield* were treated with the different enzymes at 37°C over
transfection. Nuclease-defective pneumococci (7 \times 15 min. After that, 0.1 ml of the competent nucleaseand reincubated at 30° C for 55 min. DNase (10 μ g/ml) was added to stop the reaction, and the samples were quires the same competent state that is known terial DNA was less effective, and tRNA showed
to be essential for the genetic transformation of relatively little competition even at very high pneumococci (17, 18). Thus, successful transfor-concentrations. The data also show that bacte-
mation and transfection both require activation rial DNA appears to have a substantially higher of the recipient bacteria by the pneumococcal specific activity than phage DNA in the com-
activator in a process that is pH dependent, petition experiments. The reason for this obsersensitive to trypsin, and inhibited by chloram-vation is not known.

No plaques were observed when competent

mation and transfection both require activation rial DNA appears to have a substantially higher
of the recipient bacteria by the pneumococcal specific activity than phage DNA in the competition experiments. The reason for this observation is not known.

Results summarized in Tables 3 and 4 dem- cells of Streptococcus sanguis (strain Wicky) onstrate the competition between double- were treated with Dp-4 DNA. (In this experistranded bacterial (homologous) DNA and the ment, 10^7 viable cells of S. sanguis strain Wicky transfecting phage DNA. Single-stranded bac-were activated to competence with the streptowere activated to competence with the strepto- $10⁶$ coccal competence factor [5]. Incubation of

TABLE 3. Competition between bacterial and phage DNA in transfection^{a}

UNITS/ml 으 n				Nucleic acid	Competing polynucleo- tide (µg/ml)	Phage DNA $(\mu g/ml)$	Residual transfection (%)	
ផ្ល	10 ⁵		⊣юоо≧	None	None	16	100	
FORMING ٥		79^{9-9}		Pneumococcal DNA				
ш				Double	0.5	16	21.5	
SEC			၉ ဇွေ	stranded	1.5	16	10.5	
					3.0	16	$2.3\,$	
PLAQUE TRANSI					5.0	16	1.5	
	10 ⁴	Ó.	æ ЧЮО		10.0	16	0.5	
				Single	0.5	16	92	
				stranded	1.5	16	80	
			œ		3.0	16	25	
					5.0	16	15	
					10.0	16	10	
	\bullet			tRNA	10.0	16	75	

TIME (hr) were incubated with mixtures of bacterial plus phage
DNA at different relative concentrations. Transfection FIG. 5. Competence for transformation and trans-
fection. The nuclease-defective mutant of S. pneumo-
niae and the DNA of Dp-4 (15 µg/ml) or DNA carry-
limit cellular lysis caused by phage production). Data niae and the DNA of Dp-4 (15 μ g/ml) or DNA carry-
imit cellular lysis caused by phage production). Data ing the streptomycin resistance marker (1.0 μ g/ml) in Fig. 2 clearly show that addition of DNase within the streptomycin resistance marker (1.0 $\mu g/ml$) in Fig. 2 clearly show that addition of DNase within
were used. At the times indicated, samples (0.1 ml) of
the culture were removed and assayed for transfection. Thus, the lometric units; \cup total number of infectious centers; genuine competition of the bacterial and phage DNAs (\square) total number of transformed cells. for a common step in cellular uptake.

TABLE 2. Transfection and transformation require a similar competent state

Recipient cells ^a	Transfection ^b (PFU/ml)	Transformation ^c (transformants/ml)
Incompetent ^d	$< 0.001 \times 10^4$	$< 0.001 \times 10^6$
+ Activator, pH 8	1.2×10^4 (100%)	3×10^6 (100%)
$+$ Activator, pH 6.6	0.03×10^4 (2.5%)	0.01×10^6 (0.3%)
+ Activator + Trypsin $(50 \,\mu\text{g/ml})$	0.025×10^4 (2.1%)	$< 0.001 \times 10^6$
$+$ Activator + Chloramphenicol (100 μ g/ml)	$< 0.001 \times 10^4$	0.03×10^6 (1%)

^a Nuclease-defective mutant pneumococci were grown in C medium to a cell concentration of 5×10^7 viable units/ml.

 b Transfection was assayed with 16 μ g of Dp-4 DNA per ml, according to the procedure described in the text.

 c Transformation was assayed using 0.1 μ g of DNA per ml carrying the streptomycin resistance marker.

 d Bacteria in the incompetent state were grown in C medium at pH 6.6.

Nucleic acid	Competing polynucleo- tide $(\mu g/ml)$	Transform- ing DNA $(\mu$ g/ml $)$	Residual transforma- tion $(%)$	biol. 16:965–971. 5. Horne, D. S., and D. Perry. 1974. Effect of competence induction on macromolecular synthesis in a group H Streptococcus. J. Bacteriol. 118:830-836.
None	None	0.05	100	6. Hotta, Y., and A. Bassel. 1965. Molecular size and
Dp-4 phage DNA	0.2	0.05	81	circularity of DNA in cells of mammals and higher
	1.0	0.05	21	plants. Proc. Natl. Acad. Sci. U.S.A. 53:356-360.
	10.0	0.05	4	7. Lacks, S., B. Greenberg, and M. Neuberger. 1975.
Pneumococcal DNA				Identification of a deoxyribonuclease implicated in ge- netic transformation of Diplococcus pneumoniae. J. Bacteriol. 123:222-232.
Double stranded	0.5	0.05	13	8. Lopez, R., C. Ronda, A. Tomasz, and A. Portolés. 1977. Properties of diplophage: a lipid-containing bac-
Single stranded	0.5	0.05	60	teriophage. J. Virol. 24:201-210. 9. Lowell-Parson, C., and R. H. Cole. 1973. Transfection
tRNA	10.0	0.05	95	of group H streptococci. J. Bacteriol. 113:1505-1506. 10. McDonnell, M., C. Ronda-Lain, and A. Tomasz. 1975.

TABLE 4. Competition between bacterial and phage $MN = 4$. Bradley, D. E. 1970. A comparative study of some prop-
DNA in transformation⁴ erties of the ϕ X174 type bacteriophages. Can J Micro-

streptomycin resistance markers yielded 3×10^5 19:659-667.
transformants per ml. No PFU could be detected 12. Riva, S., and M. Polsinelli. 1968. Relationship between transformants per ml. No PFU could be detected 12 - Riva, S., and M. Polsinelli. 1968. Relationship between when the same hectoric wore incubated with 15 competence for transfection and for transformation. J. when the same bacteria were incubated with 15 wirol. 2:587-593.
 μ g of Dp-4 DNA per ml for 55 min and were 13. Ronda, C., R. Lopez, A. Tapia, and A. Tomasz. 1977. μ g of Dp-4 DNA per ml for 55 min and were 13. Ronda, C., R. Lopez, A. Tapia, and A. Tomasz. 1977.
assayed for transfection, as described in Mate-
Role of the pneumococcal autolysin (murein hydrolase) assayed for transfection, as described in Mate-
rials and Methods.)

studies concerned with the mechanism of DNA Transfection of *Staphylococcus aureus* with bacterio-
binding and uptake in competent pneumococci. phage decryribonucleic acid. J. Bacteriol. 109:285-291.

The technical assistance of M. Carmen Jimenez is grate-
fully acknowledged.
17. Tomasz, A. 1966. Model for the mechanism controlling

LITERATURE CITED

- 1. Adams, M. H. 1959. Bacteriophages, p. 450-451. Wiley Interscience, New York.
- 2. Benzinger, R., L. Enquist, and A. Skalka. 1975. Trans-
fection of Escherichia coli spheroplasts. V. Activity of
- 15:861-871.
3. Bernheimer, H. P. 1977. Lysogeny in pneumococci 20. Trautner, T.
- erties of the ϕ X174 type bacteriophages. Can. J. Micro-biol. 16:965-971.
- 5. Horne, D. S., and D. Perry. 1974. Effect of competence induction on macromolecular synthesis in a group H Streptococcus. J. Bacteriol. 118:830-836.
-
- 10.00.05 ⁴¹ 7. Lacks, S., B. Greenberg, and M. Neuberger. 1975. 10.0 0.05 ⁴ Identification of ^a deoxyribonuclease implicated in ge- Pneumococcal netic transformation of Diplococcus pneumoniae. J. Bacteriol. 123:222-232.
- 8. Lopez, R., C. Ronda, A. Tomasz, and A. Portolés. 1977. Properties of diplophage: a lipid-containing bacteriophage. J. Virol. $24:201-210$.
- 9. Lowell-Parson, C., and R. H. Cole. 1973. Transfection
- 10. McDonnell, M., C. Ronda-Lain, and A. Tomasz. 1975. ^a See footnote to Table 3. **Diplophage:** a bacteriophage of Diplococcus pneumoniae. Virology 63:577-582.
11. Porter, R. D., and W. R. Guild. 1976. Characterization
- these [competent] cells with DNA carrying the of some pneumococcal bacteriophages. J. Virol.
streptomycin resistance markers vielded 3×10^5 19:659-667.
	-
- Trials and Methods.)
The availability of this transfection system
Should be of considerable help in our ongoing 14. Sjöstrom, J. E., M. Lindberg, and L. Philipson. 1972.
	-
	- 15. Spatz, H. C., and T. A. Trautner. 1971. The role of recombination in transfection of B. subtilis. Mol. Gen.
Genet. 113:177-190.
	- ACKNOWLEDGMENT Genet. 113:177-190.

	¹⁶. Tiraby, J. G., E. Tiraby, and M. S. Fox. 1975. Pneu
		- the expression of competent state in pneumococcus culture. J. Bacteriol. 91:1050-1061.
		- 18. Tomasz, A. 1970. Cellular metabolism in genetic trans-formation of pneumococci: requirement for protein synthesis during induction of competence. J. Bacteriol.
101:860-871.
	- fection of *Escherichia coli* spheroplasts. V. Activity of 19. **Tomasz, A., and R. D. Hotchkiss.** 1964. Regulation of the recBC nuclease in rec⁺ and rec⁻ spheroplasts mea-
sured with different forms of phage DNA. J. Vi
	- sternheimer, H. P. 1977. Lysogeny in pneumococci 20. Trautner, T. A., and H. Spatz. 1973. Transfection in B. freshly isolated from man. Science 195:66–68.
freshly isolated from man. Science 195:66–68. subtilis. Curr. Top. Microbiol. Immunol. 62:61-88.