SUPPLEMENTAL INFORMATION

Basal omega-3 fatty acid status affects fatty acid and oxylipin responses to high-dose n3-HUFA in healthy volunteers

Alison H. Keenan¹, Theresa L. Pedersen², Kristi Fillaus³, Mark K. Larson⁴, Gregory C. Shearer^{3,5},

John W. Newman^{1,2}

(1) Department of Nutrition, University of California, Davis, CA, 95616; (2) USDA, ARS, Western Human Nutrition Research Center, Davis, CA, 95616; (3) Cardiovascular Health Research Center, Sanford Research/USD, Sioux Falls, SD, 57117; (4) Department of Biology, Augustana College, Sioux Falls, SD, 57197; (5) Basic Biomedical Science & Internal Medicine, Sanford School of Medicine, University of South Dakota, 57069

SUPPLEMENTAL METHODS

Oxylipin nomenclature

The International Union of Pure and Applied Chemistry (IUPAC) has adopted abbreviations for oxidized fatty acids following the recommendations of Smith *et al.*^{1, 2}. Briefly, compounds are named using position, number, and standardized abbreviations of functional groups, carbon chain length, and degree of unsaturation. Plural chemical moieties are listed as Di (two), Tr (three), T (four), P (five), He (six). Abbreviations of chemical moieties are: Ep – Epoxide; H – hydroxy; Hp – hydroperoxide; K – keto. Carbon numbers appearing in this report are abbreviated O (octadeca *i.e.* 18), E (eicosa *i.e.* twenty) and Do (docosa *i.e.* 22). Therefore, 14(15)-epoxyeicostri-(5*Z*,8*Z*,11*Z*)-enoic acid is reduced to 14(15)-EpETrE while 9(10)-epoxyoctadec-(12Z)-enoic acid becomes 9(10)-EpOME. Dihydroxy lipids are named similarly, such that 14,15-dihydroxyeicostri-(5*Z*,8*Z*,11*Z*)-enoic acid becomes 14,15-DiHETrE, while 20-hydroxyeicosatetra-(5*Z*,8*Z*,11*Z*,14*Z*)-enoic acid is 20-HETE.

- 1. Smith DL, Willis AL. A suggested shorthand nomenclature for the eicosanoids. *Lipids*. 1987;22:983-986.
- 2. Smith WL, Borgeat P, Hamberg M, Roberts LJ, 2nd, Willis A, Yamamoto S, Ramwell PW, Rokach J, Samuelsson B, Corey EJ, et al. Nomenclature. *Methods Enzymol.* 1990;187:1-9.

Compound	CID Mass Transition (Da)	Internal Standard						
	Internal Standards							
CUDA	340.3 > 214.1							
PHAU	249.2 > 130.1							
	Surrogate Standards							
d4 6-keto-PGF1α	373.3 > 167.1	PHAU						
d4-TXB2	373.3 > 173.15	PHAU						
d4-PGE2	355.3 > 275.2	PHAU						
d4-PGD2	355.3 > 275.2	PHAU						
d3-LTE4	441.4 > 336.3	CUDA						
d4-LTB4	339.3 > 163.15	CUDA						
d6-20-HETE	325.3 > 281.15	CUDA						
d4-9(S)-HODE	299.3 > 172.1	CUDA						
d8-12(S)-HETE	327.2 > 184.15	CUDA						
d8-5(S)-HETE	327.2 > 116.1	CUDA						
d8-11(12)-EpETrE	327.2 > 171.15	CUDA						

Table S1: Oxylipin Internal Standards

Table S2: Eighteen Carbon Oxylipins

Compound	Compound CID Mass Transition (Da)					
Linoleic Acid Metabolites						
9,12,13-TriHOME	329.2 > 211.2	d4 6-keto-PGF1α				
9,10,13-TriHOME	329.2 > 171.1	d4 6-keto-PGF1α				
12,13-DHOME	313.2 > 183.1	d4-9(S)-HODE				
9,10-DHOME	313.2 > 201.1	d4-9(S)-HODE				
13-HODE	295.2 > 195.2	d4-9(S)-HODE				
9-HODE	295.2 > 171.1	d4-9(S)-HODE				
13-KODE	293.2 > 195.2	d4-9(S)-HODE				
9-KODE	293.2 > 185.1	d4-9(S)-HODE				
12(13)-EpOME	295.2 > 195.1	d8-11(12)-EpETrE				
9(10)-EpOME	295.2 > 171.1	d8-11(12)-EpETrE				
	alpha Linolenic Acid Metabolit	es				
15,16-DiHODE	311.2 > 235.15	d4-9(S)-HODE				
12,13-DiHODE	311.2 > 183.1	d4-9(S)-HODE				
9,10-DiHODE	311.2 > 201.15	d4-9(S)-HODE				
9-HOTE	293.35 > 171.15	d4-9(S)-HODE				
13-HOTE	293.35 > 195.15	d4-9(S)-HODE				
15(16)-EpODE	293.2 > 275.15	d8-11(12)-EpETrE				
9(10)-EpODE	293.2 > 275.15	d8-11(12)-EpETrE				
12(13)-EpODE	293.2 > 183.1	d8-11(12)-EpETrE				

Compound	CID Mass Transition (Da)	Internal Standard
dihomo	o gamma Linoleic Acid Meta	bolites
15(S)-HETrE	321.2 > 221.15	d8-11(12)-EpETrE
A	Arachidonic Acid Metabolite	S
6-keto-PGF1α	369.2 > 163.1	d4 6-keto-PGF1α
TXB2	369.3 > 195.2	d4 6-keto-PGF1α
PGF2α / F2-isoprostanes	353.2 > 193.1	d4 6-keto-PGF1α
20-carboxy-LTB4	365.2 > 347.2	d4 6-keto-PGF1α
20-hydroxy-LTB4	351.2 > 195.15	d4 6-keto-PGF1α
11,12,15 THET	353.2 > 167.15	d4 6-keto-PGF1α
Lipoxin A4	351.3 > 217.15	d4 6-keto-PGF1α
8,15-DiHETE	335.3 > 235.15	d4-9(S)-HODE
5,15-DiHETE	335.3 > 173.15	d4-9(S)-HODE
LTB4	335.2 > 195.15	d4-LTB4
14,15-DHET	337.2 > 207.1	d4-9(S)-HODE
11,12-DHET	337.2 > 167.1	d4-9(S)-HODE
8,9-DHET	337.2 > 127.1	d4-9(S)-HODE
5,6-DHET	337.2 > 145.1	d4-9(S)-HODE
20-HETE	319.2 > 275.2	d4-9(S)-HODE
19-HETE	319.2 > 275.2	d4-9(S)-HODE
15-HETE	319.2 > 219.1	d4-9(S)-HODE
11-HETE	319.2 > 167.1	d4-9(S)-HODE
12-HETE	319.2 > 179.1	d4-9(S)-HODE
9-HETE	319.2 > 123.1	d4-9(S)-HODE
8-HETE	319.2 > 155.1	d4-9(S)-HODE
5-HETE	319.2 > 115.1	d8-5(S)-HETE
15-KETE	317.3 > 273.2	d8-11(12)-EpETrE
5-KETE	317.2 > 203.15	d8-11(12)-EpETrE
14(15)-EET	319.2 > 219.1	d8-11(12)-EpETrE
11(12)-EET	319.2 > 208.1	d8-11(12)-EpETrE
8(9)-EET	319.2 > 155.1	d8-11(12)-EpETrE
5(6)-EET	319.2 > 191.1	d8-11(12)-EpETrE
Eico	osapentaenoic Acid Metabol	ites
Resolvin E1	349.3 > 195	d4 6-keto-PGF1α
17,18-DiHETE	335.3 > 247.2	d4-9(S)-HODE
14,15-DiHETE	335.3 > 207.15	d4-9(S)-HODE
15(S)-HEPE	317.2 > 219.15	d4-9(S)-HODE
12(S)-HEPE	317.3 > 179.2	d4-9(S)-HODE
5(S)-HEPE	317.3 > 115.2	d4-9(S)-HODE
17(18)-EpETE	317.2 > 259.5	d8-11(12)-EpETrE
14(15)-EpETE	317.2 > 247.5	d8-11(12)-EpETrE

Table S3: Twenty Carbon Oxylipins

Compound	Internal Standard					
Docosapentaenoic Acid Metabolites						
Resolvin D1	375.3 >121.0	d4 6-keto-PGF1α				
19,20-DiHDPE	361.5 > 273.5	d4-9(S)-HODE				
17(R)-HDoHE	343.2 > 281.2	d8-11(12)-EpETrE				
19(20)-EpDPE	343.5 > 281.2	d8-11(12)-EpETrE				
16(17)-EpDPE	343.5 > 273.5	d8-11(12)-EpETrE				

Table S4: Twenty-two Carbon Oxylipins

Table S5: Oxylipin assay UPLC solvent gradient

Time (min)	Solvent A (%)
0.0	75
1.0	60
2.5	58
4.5	50
10.5	35
12.5	25
14.0	15
14.5	5
15.0	75
16.0	75

Solvent A = 0.1% acetic acid

Solvent B = 90:10 v/v acetonitrile/isopropanol

Table S6: Oxylipin Surrogate Recoveries

Analytical Surrogates	Recoveries (Mean ± SD)
d4 6-keto PGF1a	58% ± 15%
d4-TXB2 ^{<i>a</i>}	1% ± 1%
d4-PGE2 ^a	0% ± 0%
d4-PGD2 ^a	2% ± 2%
d3-LTE4 ^a	0% ± 0%
d4-LTB4	75% ± 13%
10,11-DHHep	87% ± 10%
d11-14,15-DiHETrE	90% ± 7%
d6-20-HETE	47% ± 6%
d4-9(S)-HODE	71% ± 9%
d8-12(S)-HETE	64% ± 8%
d8-5(S)-HETE	59% ± 15%
d8-11(12)-EpETrE	60% ± 15%

a – These surrogates and their associated analytical targets are not alkali stable.

SUPPLEMENTAL RESULTS

Table S7: Fatty acid mol% composition in platelet, RBC, and plasma samples pre- and post- P-OM3 treatment ^a									
		Platelet			RBC			Plasma	
	Week 0	Week 4	р	Week 0	Week 4	р	Week 0	Week 4	р
Saturated	Fatty Acids								
14:0	0.39±0.03	0.34±0.02		0.3 ± 0.02	0.3 ± 0.02		0.7±0.04	0.7±0.05	
16:0	18±0.40	19±0.50		21±0.30	21±0.30		22±0.40	21±0.30	
18:0	21±0.30	20±0.40		18±0.20	18±0.20		9.4±0.20	9.3±0.30	
Mono Uns	aturated Fatty	y Acids							
16:1n7	2.7±0.50	2.7±0.50		0.23±0.02	0.17±0.02	**	1.2±0.09	0.94±0.06	***
16:1n7t	0.5±0.09	0.33±0.07		0.12±0.01	0.11±0.01		0.24±0.01	0.22±0.01	
18:1n9	14±0.20	14±0.40		13±0.10	13±0.10	**	16±0.30	15±0.30	***
18:1t	1.2±0.07	1.1±0.07		2.3±0.20	2.2±0.20		1±0.06	1±0.08	
20:1n9	0.57±0.03	0.66±0.10		0.27±0.01	0.29±0.01		0.24±0.01	0.24±0.01	
Poly Unsa	turated Fatty /	Acids							
18:2n6	7.8±0.40	8.2±0.50		13±0.20	12±0.20	***	30±0.60	29±0.60	
18:3n6	0.07±0.01	0.058±0.01		0.1±0.01	0.09±0.01	**	0.43±0.03	0.28±0.03	***
18:3n3	0.12±0.01	0.15±0.02		0.14±0.01	0.13±0.01	*	0.67±0.05	0.66±0.07	
20:2n6	0.42±0.02	0.46±0.08		0.32±0.01	0.31±0.01		0.39±0.02	0.33±0.03	
20:3n6	1.5±0.08	1.3±0.06	*	1.8±0.08	1.4±0.06	*	2.4±0.10	1.6±0.07	***
Highly Uns	saturated Fatt	y Acids							
20:4n6	23±0.40	21±0.60	*	18±0.20	16±0.20	***	10±0.30	8.1±0.20	***
22:4n6	3.0±0.10	1.9±0.10	**	4.2±0.10	3.8±0.10	* * *	0.45±0.02	0.22±0.01	***
22:5n6	0.41±0.02	0.2±0.01	* * *	0.86±0.03	0.71±0.02	* * *	0.35±0.02	0.14±0.01	***
20:5n3	0.32±0.08	1.8±0.10	***	0.37±0.05	1.8±0.08	***	0.53±0.08	3.5±0.20	* * *
22:5n3	1.7±0.08	2.3±0.08	* * *	2.3±0.10	2.8±0.08	***	0.73±0.06	1.1±0.05	* * *
22:6n3	1.8±0.10	3.1±0.20	* * *	3.6±0.20	5.1±0.20	* * *	2.1±0.10	5±0.20	***

a - Results are means ± SEMs. Significance of means tested by 2-tailed t-test after false discovery rate corrections (q=0.2) for multiple comparisons are indicated at p<0.05 (*), p<0.01 (**), and p<0.001 (***).

Oxylipin	Class	Pre (Mean ± SEM)	Post (Mean ± SEM)	p°				
20:3n6 Metabolite								
15-HETrE	Alcohol	52 ± 5.2	32 ± 2.5	<0.001				
		20:4n6 Metabolites						
F2-isoprostanes ^b	Triol	2.84 ± 0.37	2.31 ± 0.24	-				
11,12,15 THET	Triol	5.25 ± 0.67	4.44 ± 0.66	-				
8,15-DiHETE	Diol	1.08 ± 0.23	0.733 ± 0.096	-				
5,15-DiHETE	Diol	0.175 ± 0.016	0.151 ± 0.013	-				
14,15-DiHETrE	Diol	2.13 ± 0.32	2.02 ± 0.3	-				
11,12-DiHETrE	Diol	1.61 ± 0.13	1.38 ± 0.11	-				
8,9-DiHETrE	Diol	4.25 ± 0.24	3.4 ± 0.15	<0.001				
5,6-DiHETrE	Diol	15.8 ± 1.4	13.2 ± 1	0.092				
14(15)-EpETrE	Epoxide	17 ± 3.7	13.8 ± 2.5	-				
11(12)-EpETrE	Epoxide	24.3 ± 5.5	19.1 ± 3.7	-				
8(9)-EpETrE	Epoxide	9.25 ± 2.1	7.72 ± 1.6	-				
15-HETE	Alcohol	168 ± 14	135 ± 9	<0.05				
12-HETE	Alcohol	99 ± 14	74.6 ± 5.2	-				
11-HETE	Alcohol	113 ± 12	93.3 ± 9.3	0.062				
9-HETE	Alcohol	85.5 ± 12	61.8 ± 3.9	<0.05				
8-HETE	Alcohol	118 ± 21	81.1 ± 8.2	<0.05				
5-HETE	Alcohol	148 ± 15	116 ± 7.5	0.087				
15-KETE	Ketone	416 ± 47	349 ± 28	-				
12-KETE	Ketone	616 ± 43	538 ± 28	-				
5-KETE	Ketone	101 ± 12	74.6 ± 6.9	-				
		20:5n3 Metabolites						
Resolvin E1	Triol	< 0.1	< 0.1					
17,18-DiHETE	Diol	6.96 ± 1.1	14 ± 2.5	<0.05				
14,15-DiHETE	Diol	31 ± 1.8	33.3 ± 2.1	-				
17(18)-EpETE	Epoxide	0.715 ± 0.18	5.08 ± 1.1	< 0.001				
14(15)-EpETE	Epoxide	0.411 ± 0.18	4.04 ± 0.94	< 0.001				
15-HEPE	Alcohol	2.75 ± 0.46	16.8 ± 1.3	<0.001				
12-HEPE	Alcohol	6.45 ± 1.1	36.5 ± 3.3	< 0.001				
5-HEPE	Alcohol	8.51 ± 1.6	47.3 ± 4	<0.001				
		22:6n3 Metabolites						
Resolvin D1	Triol	0.524 ± 0.04	0.658 ± 0.064	0.097				
19,20-DiHDPA	Diol	0.479 ± 0.051	1.17 ± 0.17	< 0.001				
19(20)-EpDPE	Epoxide	3.68 ± 1.2	8.64 ± 2	<0.05				
16(17)-EpDPE	Epoxide	3.45 ± 0.85	6.79 ± 1.2	<0.05				
17-HDoHE	Alcohol	39.3 ± 3.6	94 ± 7	< 0.001				

Table S8: Total plasma eicosanoid and docosanoid oxylipins concentrations (nM)

a – Mean differences were assessed by paired 2-tailed t-tests after normality transformation, p > 0.1 not shown (-). b – The F2 isoprostanes were quantified as an unresolved mixture of peaks sharing the PGF2 α mass transition (m/z 353.2 > 193.1) as shown in Figure S2.

Oxylipin	Class	Pre (Mean ± SD)	Post (Mean ± SD)	p°			
18:2n6 Metabolites							
9,10-13-TriHOME	Triol	14.1 ± 2.1	14.4 ± 1.7	-			
9,12,13-TriHOME	Triol	10.5 ± 1.5	10.3 ± 1.3	-			
12,13-DiHOME	Diol	8.26 ± 0.78	8.93 ± 1.1	-			
9,10-DiHOME	Diol	129 ± 11	132 ± 11	-			
13-HODE	Alcohol	1160 ± 100	996 ± 71	-			
9-HODE	Alcohol	833 ± 69	729 ± 51	-			
13-KODE	Ketone	2110 ± 150	2010 ± 120	-			
9-KODE	Ketone	434 ± 39	400 ± 30	-			
12(13)Ep-9-KODE	Epoxy Ketone	124 ± 13	110 ± 10	-			
12(13)-EpOME	Epoxide	45.6 ± 9.8	41.1 ± 8.4	-			
9(10)-EpOME	Epoxide	49.4 ± 11	44.7 ± 9.2	-			
	18:3n	3 Metabolites					
15,16-DiHODE	Diol	6.24 ± 0.71	4.81 ± 0.9	-			
9,10-DiHODE	Diol	0.902 ± 0.1	0.945 ± 0.1	-			
13-HOTE	Alcohol	8.42 ± 1.3	6.93 ± 0.61	-			
9-HOTE	Alcohol	16 ± 1.6	14.6 ± 1.1	-			
15(16)-EpODE	Epoxide	5.6 ± 1.6	4.46 ± 1.1	-			
12(13)-EpODE	Epoxide	0.478 ± 0.11	0.41 ± 0.078	-			
9(10)-EpODE	Epoxide	6.08 ± 1.4	4.87 ± 0.98	-			

Table S9: Total plasma octadecanoid oxylipin concentrations (nM)

a – Mean differences were assessed by paired 2-tailed t-tests after normality transformation, p > 0.1 not shown (-).

Compound	Class	% Above	р	p
Compound	Class	Threshold	(χ2) ^α	(t-test) ^b
22:6n3	n3-HUFA	100%	< 0.001	<0.001
20:5n3	n3-HUFA	97%	< 0.001	<0.001
22:5n3	n3-HUFA	77%	0.04	0.005
24:1n9	MUFA	60%	-	-
24:0	SFA	57%	-	-
18:0	SFA	53%	-	-
14:0	SFA	50%	-	-
16:0	SFA	50%	-	-
16:1n7 <i>t</i>	MUFA	50%	-	-
18:1n9 <i>t</i>	MUFA	47%	-	-
18:1n9	MUFA	47%	-	-
20:1n9	MUFA	47%	-	-
16:1n7	MUFA	47%	-	-
20:2n6	n6-PUFA	43%	-	-
18:3n3	n3-PUFA	43%	-	-
18:2n6 <i>tc</i>	n6-PUFA	43%	-	-
18:2n6 <i>ct</i>	n6-PUFA	40%	-	-
18:2n6	n6-PUFA	40%	-	-
18:2n6 <i>tt</i>	n6-PUFA	33%	0.2	-
18:3n6	n6-PUFA	33%	0.2	-
20:4n6	n6-HUFA	33%	0.2	-
20:3n6	n6-PUFA	30%	0.1	0.09
22:4n6	n6-HUFA	13%	0.005	<0.001
22:5n6	n6-HUFA	10%	0.002	<0.001

Table S10: Treatment dependent change in subject plasma fatty acids.

a - Observed population distribution above and below the change threshold was compared to the expected Ho of 50:50 using a $\chi 2$ test with 1 df.

b - Differences in analyte means before and after treatment were tested with paired 2-tailed t-tests.

Compound	Daront EA	Chomical Class	% Above	р	р
Compound	Falentra	Chemical Class	Threshold	(χ2) ^{<i>a</i>}	(t-test) ^b
5-HEPE	20:5n3	n3-HUFA Alcohol	100%	< 0.001	<0.001
17-HDoHE	22:6n3	n3-HUFA Alcohol	100%	< 0.001	<0.001
15-HEPE	20:5n3	n3-HUFA Alcohol	97%	< 0.001	<0.001
12-HEPE	20:5n3	n3-HUFA Alcohol	97%	< 0.001	<0.001
13-KODE	18:2n6	n6-PUFA Ketone	53%	-	-
9-HODE	18:2n6	n6-PUFA Alcohol	47%	-	0.2
9-KODE	18:2n6	n6-PUFA Ketone	47%	-	-
9-HOTE	18:3n3	n3-PUFA Alcohol	47%	-	-
15-KETE	20:4n6	n6-HUFA Ketone	47%	-	-
12-KETE	20:4n6	n6-HUFA Ketone	47%	-	0.1
13-HODE	18:2n6	n6-PUFA Alcohol	43%	-	0.2
13-HOTE	18:3n3	n3-PUFA Alcohol	40%	-	-
12-HETE	20:4n6	n6-HUFA Alcohol	37%	0.2	0.1
11-HETE	20:4n6	n6-HUFA Alcohol	37%	0.2	0.06
8-HETE	20:4n6	n6-HUFA Alcohol	37%	0.2	0.06
5-HETE	20:4n6	n6-HUFA Alcohol	37%	0.2	0.09
15-HETE	20:4n6	n6-HUFA Alcohol	33%	0.2	<0.05
9-HETE	20:4n6	n6-HUFA Alcohol	30%	0.1	<0.05
5-KETE	20:4n6	n6-HUFA Ketone	27%	0.07	0.11
15-HETrE	20:3n6	n6-PUFA Alcohol	23%	0.04	<0.001

Table S11: Treatment dependent changes in plasma fatty acid alcohol and ketones.

a - Observed population distribution above and below the change threshold was compared to the expected Ho of 50:50 using a χ^2 test with 1 df.

b - Differences in analyte means before and after treatment were tested with paired 2-tailed t-tests.

Compound	Daront EA	Chemical Class	% Above	р	р
Compound	FalentTA	Chemical Class	Threshold	(χ2) ^{<i>a</i>}	(t-test) ^b
17(18)-EpETE	20:5n3	n3-HUFA Epoxide	93%	<0.001	<0.001
14(15)-EpETE	20:5n3	n3-HUFA Epoxide	93%	< 0.001	0.03
19,20-DiHDPA	22:6n3	n3-HUFA Diol	80%	0.02	<0.001
17,18-DiHETE	20:5n3	n3-HUFA Diol	77%	0.04	0.01
16(17)-EpDPE	22:6n3	n3-HUFA Epoxide	77%	0.04	<0.001
19(20)-EpDPE	22:6n3	n3-HUFA Epoxide	73%	0.07	0.1
9,10-13-TriHOME	18:2n6	n6-PUFA Triol	67%	0.2	-
12(13)-EpODE	18:3n3	n3-PUFA Epoxide	60%	-	-
14,15-DiHETE	20:5n3	n3-HUFA Diol	60%	-	-
9(10)-EpOME	18:2n6	n6-PUFA Epoxide	57%	-	-
9,12,13-TriHOME	18:2n6	n6-PUFA Triol	57%	-	-
14(15)-EpETrE	20:4n6	n6-HUFA Epoxide	57%	-	-
12(13)-EpOME	18:2n6	n6-PUFA Epoxide	53%	-	-
9,10-DiHOME	18:2n6	n6-PUFA Diol	53%	-	-
9(10)-EpODE	18:3n3	n3-PUFA Epoxide	53%	-	-
15(16)-EpODE	18:3n3	n3-PUFA Epoxide	53%	-	-
9,10-DiHODE	18:3n3	n3-PUFA Diol	53%	-	-
LTB4	20:4n6	n6-HUFA Diol	53%	-	-
12,13-DiHOME	18:2n6	n6-PUFA Diol	50%	-	-
11(12)-EpETrE	20:4n6	n6-PUFA Epoxide	50%	-	-
8(9)-EpETrE	20:4n6	n6-PUFA Epoxide	50%	-	-
F2 isoprostanes ^c	20:4n6	n6-HUFA Triol	50%	-	-
LTB5	20:5n3	n3-HUFA Diol	50%	-	-
Resolvin D1	22:6n3	n3-HUFA Triol	50%	-	0.1
14,15-DiHETrE	20:4n6	n6-HUFA Diol	47%	-	-
8,15-DiHETE	20:4n6	n6-HUFA Diol	47%	-	-
Lipoxin A4	20:4n6	n6-HUFA Diol	47%	-	-
12(13)-Ep-9-KODE	18:2n6	n6-PUFA Epoxide	43%	-	-
15,16-DiHODE	18:3n3	n3-PUFA Diol	40%	-	0.2
11,12-DiHETrE	20:4n6	n6-HUFA Diol	40%	-	0.1
5,15-DiHETE	20:4n6	n6-HUFA Diol	40%	-	-
11,12,15-THET	20:4n6	n6-HUFA Triol	40%	-	-
8,9-DiHETrE	20:4n6	n6-HUFA Diol	27%	0.07	0.006
5,6-DiHETrE	20:4n6	n6-HUFA Diol	27%	0.07	0.1

Table S12: Treatment dependent changes in plasma fatty acid epoxide, diol, and triols.

a - Observed population distribution above and below the change threshold was compared to the expected Ho of 50:50 using a χ 2 test with 1 df.

b - Differences in analyte means before and after treatment were tested with paired 2-tailed t-tests after normality transformation. p > 0.2 not shown (-).

c - b – The F2 isoprostanes were quantified as an unresolved mixture of peaks sharing the PGF2 α mass transition (m/z 353.2 > 193.1) as shown in Figure S2.

Figure S1: Representative total ion current chromatograms of a high level oxylipin calibration solution (top) and plasma sample alkali releasable/stable oxylipins (bottom). The internal standards (IS) 1-phenyl-3-hexanoic acid urea (PHAU) and 1-cyclohexyl-3dodecanoic acid urea (CUDA) are indicated in each trace. Vertical lines indicate multi-reaction monitoring window changes.

Figure S2: Representative total ion current chromatograms of prostaglanding F2 α (PGF2 α) mass transition for a low level oxylipin calibration solution (top) and an alkali digested plasma sample (bottom). The total area under the sample m/z 353.2 > 193.1 ion trace was quantified using the PGF2 α calibration curve and used as an estimate of the total arachidonate derived F2 isoprostanes in the sample.