SUPPLEMENTARY INFORMATION

Evolution of substrate specificity for the bile salt transporter ABST (SLC10A2)

Daniël A. Lionarons^{*}, James L. Boyer^{*†} and Shi-Ying Cai^{*}

^{*}Department of Internal Medicine and Liver Center, Yale University School of Medicine, New Haven, CT 06520; and [†]Mount Desert Island Biological Laboratory, Salisbury Cove, ME 04672

Western blotting and immunofluorescent labeling methods

COS-7 cells and HEK293T cells were maintained at low passage number in growth medium. On day 1, cells were seeded on a 12-well plate. On day 2, cells approached confluence and were transiently transfected using Lipofectamine 2000 (Invitrogen). Specifically, for each well in a 12-well plate, 1 µg of pcDNA3-skAsbt-FLAG construct or 1 µg of pcDNA3 empty vector or 25 ng pcDNA3-lpAsbt-FLAG + 975 ng pcDNA3 or 150 ng pcDNA3-lpAsbt-FLAG + 850 ng pcDNA3 were used for transfection. On day 3, cells were harvested. For Western blotting, protein was extracted using M-PER Mammalian Protein Extraction Reagent (Pierce). Fifty µg of protein per lane was resolved in a 10% SDS-PAGE and transferred onto PVDF membrane. An anti-FLAG M2 antibody was used as primary antibody (1:500 dilution), followed by HRP conjugated anti-mouse IgG secondary antibody. The immunocomplex was visualized using ECL reagents and recorded on X-ray film. For immunofluorescent labeling, cells were plated on a poly-Lysine coated coverslip. After transfection, cells were fixed using 4% paraformaldehyde. An anti-FLAG M2 antibody (1:500 dilution) was used as primary antibody. Nuclei were stained with Topro-3. Fluorecent images were taken with a Zeiss LSM 510 confocal microscope.

Table S1. Oligonucleotide sequences used for molecular cloning and realtime RT-PCR detectionof lpAsbt, skAsbt and hASBT.

Name	Sequence (5´-> 3´)	Gene
Slc10a2d-F1	NTGYCARTTYGGNATHATGCC	Slc10a2
Slc10a2d-R2	NSWRTADATNARNGGRAANGYRAA	Slc10a2
skAsbt-F9	TGGAGACATGGATTTAAGCATAAGC	skate Asbt
skAsbt-R10	GAGGCAAAGAGGCATCATTCC	skate Asbt
skAsbt-P11	Fam-TGACCACATGCTCCACAGTGCTGGG	skate Asbt
sAsbt-R12	GCTGAATTCACTTGTCATCGTCATCCTTGTAATCCAGGTTGGTACCTGCGTCC	skate Asbt
sAsbt-F13	CGCATAAGCTTGCTGTGAAACTGCGAAGACCGG	skate Asbt
sAsbt-R14	GCAGAATTCGCATTATTATCTGTAATGACCATGGC	skate Asbt
ISIc10a2-F1	GCCAGTTCGGCTTCATGCCC	lamprey Asbt
ISIc10a2-R2	GAGGCAGAGCGGCATCATCC	lamprey Asbt
ISIc10a2-R3	AAGGCGCTGTAGATGAGCGG	lamprey Asbt
lpAsbt-F4	CAGAACAGCCAGCTGTGCACCACC	lamprey Asbt
lpAsbt-F5	CTTCACTCCCGAGCAGCTCGTGC	lamprey Asbt
lpAsbt-F6	GCTCAAGCTTCCAAGATGCCGTACGAAGACTACGAGG	lamprey Asbt
lpAsbt-R7	GCTGAATTCCCGCAGCGTCTACAGAGAAGTG	lamprey Asbt
lpAsbt-R10	GCTGAATTCTACTTGTCATCGTCATCCTTGTAATCCAGAGAAGTGCCGGCGATCTCCC	lamprey Asbt
lampAsbt-F5	GGACCTCAGCATCAGCATGAC	lamprey Asbt
lampAsbt-P6	Fam-TTCTACGCTGCTGGGCATGG	lamprey Asbt
lampAsbt-R7	AGGCAGAGCGGCATCATC	lamprey Asbt
hASBT-F1	GCAAGGATCCAGCAGCAGACCCAGCAATG	human ASBT
hASBT-R2	GCTGAATTCGTCTGTTTTGTCCACTTGATGTC	human ASBT

Table S2. Amino acid sequence identity among ASBT/Asbt's and other members in SLC10A family. Sequences were aligned using the Clustal Omega algorithm and sequence identity was calculated using the Jalview tool. Accession numbers of sequences used are listed in Table S3. (mAsbt, mouse Asbt; skAsbt, skate Asbt; lpAsbt, lamprey Asbt; hNTCP, human Na⁺-taurocholate cotransporting polypeptide (SLC10A1); hSOAT, human sodium-dependent organic anion transporter (SLC10A6); nmSlc10a, *N. meningitidis* Slc10a.)

% identity	hASBT	mAsbt	skAsbt	lpAsbt	hSOAT	hNTCP	SLC10A4	SLC10A5	SLC10A3	nmSlc10a
mAsbt	81									
skAsbt	64	66								
lpAsbt	58	57	60							
hSOAT	45	48	47	49						
hNTCP	34	32	35	34	32					
SLC10A4	34	35	35	35	31	35				
SLC10A5	28	29	35	27	24	25	23			
SLC10A3	26	26	29	25	28	29	28	37		
nmSlc10a	25	26	26	24	23	24	24	25	26	
SLC10A7	21	19	18	18	20	20	-	-	-	20

Table S3. GenBank, Ensembl genome database (Ensembl release 66) and Protein Data Bank accession numbers of confirmed and predicted protein sequences used for amino acid alignment and phylogenetic analysis.

Reference name	Gene symbol	Species	Accession number
human_NTCP/SLC10A1	SLC10A1	Homo sapiens	NP_003040.1
mouse Ntcp/Slc10a1	Slc10a1	Mus musculus	NP_001171032.1
human_ASBT	SLC10A2	Homo sapiens	NP_000443.1
chimpanzee_Asbt	Slc10a2	Pan troglodytes	XP_522716.2
dog_Asbt	Slc10a2	Canis lupus familiaris	NP_001002968.1
rabbit_Asbt	Slc10a2	Oryctolagus cuniculus	NP_001076233.1
rat_Asbt	Slc10a2	Rattus norvegicus	NP_058918.1
mouse_Asbt	Slc10a2	Mus musculus	NP_035518.1
chicken_Asbt	Slc10a2	Gallus gallus	XP_425589.2
zebrafish_Asbt	Slc10a2	Danio rerio	NP_956652.1
skate_Asbt	Slc10a2	Leucoraja erinacea	JX014267
lamprey_Asbt	Slc10a2	Petromyzon marinus	JX014266
human_SLC10A3	SLC10A3	Homo sapiens	NP_062822.1
mouse_SIc10a3	Slc10a3	Mus musculus	NP_663381
human_SLC10A4	SLC10A4	Homo sapiens	NP_689892.1
mouse_SIc10a4	Slc10a4	Mus musculus	NP_775579.2
human_SLC10A5	SLC10A5	Homo sapiens	NP_001010893.1
mouse_SIc10a5	Slc10a5	Mus musculus	NP_001010834.1
human_SOAT/SLC10A6	SLC10A6	Homo sapiens	NP_932069.1
chimpanzee_Soat/Slc10a6	Slc10a6	Pan troglodytes	XP_526626.2
dog_Soat/Slc10a6	Slc10a6	Canis lupus familiaris	XP_851303.1
mouse_Soat/SIc10a6	Slc10a6	Mus musculus	NP_083691.1
cod_Soat/Slc10a6	Slc10a6	Gadus morhua	ENSGMOP0000002764
human_SLC10A7	SLC10A7	Homo sapiens	NP_001025169.1
mouse_Slc10a7	Slc10a7	Mus musculus	NP_084012.1
n.meningitidis_Slc10a	Slc10a	Neisseria meningitidis	3ZUY
ciona_Slc10a-like	Slc10a-like	Ciona intestinalis	ENSCINP0000003667
ciona_Slc10a1-like	Slc10a1-like	Ciona intestinalis	XP_002124965.1
ciona_Slc10a4-like	Slc10a4-like	Ciona intestinalis	ENSCINP0000008688
ciona_Slc10a5-like (#2127302.1)	Slc10a5-like	Ciona intestinalis	XP_002127302.1
ciona_Slc10a4-like (#2127506.1)	Slc10a4-like	Ciona intestinalis	XP_002127506.1
ciona_Slc10a-like (#13851)	Slc10a-like	Ciona intestinalis	ENSCINP0000013851
ciona_Slc10a2-like (#2120408.1)	Slc10a2-like	Ciona intestinalis	XP_002120408.1
ciona_Slc10a2-like (#2120470.1)	Slc10a2-like	Ciona intestinalis	XP_002120470.1
ciona_Slc10a-like (#28590)	Slc10a-like	Ciona intestinalis	ENSCINP0000028590
ciona_Slc10a2-like (#2123186.1)	Slc10a2-like	Ciona intestinalis	XP_002123186.1
ciona_Slc10a-like (#12686)	Slc10a-like	Ciona intestinalis	ENSCINP00000012686
ciona-Slc10a-like (#15302)	Slc10a-like	Ciona intestinalis	ENSCINP00000015302
ciona-Slc10a-like (#22065)	Slc10a-like	Ciona intestinalis	ENSCINP0000022065
ciona_Slc10a7-like (#2131347.1)	Slc10a7-like	Ciona intestinalis	XP_002131347.1
ciona_Slc10a-like (#9747)	Slc10a-like	Ciona intestinalis	ENSCINP0000009747
ciona-Slc10a-like (#22024)	Slc10a-like	Ciona intestinalis	ENSCINP0000022024
human_SLC17A5	SLC17A5	Homo sapiens	NP_036566

Figure S1. Phylogenetic tree of the Slc10a protein family, including all potential ciona Slc10a members retrieved using BLAST searches of the ciona genome. Phylogeny was inferred with Bayesian MCMC analysis. No ciona orthologs of Slc10a2 or Slc10a6 could be identified. However, several sequences were placed at the common branch of Slc10a2 and Slc10a6 subfamilies, suggesting these sequences originate from a common ancestral protein of Slc10a2 and Slc10a2 and Slc10a6. This leads us to propose that distinct Slc10a2 and Slc10a6 genes emerged from a gene duplication of an ancient Slc10a2/a6-like protein between ciona and lamprey evolution, around the beginning of vertebrate evolution. Posterior probabilities are indicated at nodes and branch length is expressed as number of expected substitutions per site. Accession numbers of analyzed sequences are listed in table S3.

N-terminus IDPNShuman_ASBT rabbit Asbt SNLTVGrat_Asbt DNSSV--DNSSV mouse_Asbt chicken Asbt DNSTACPAVDNSTA 1 ----zebrafish_Asbt CTLEPskate Asbt _____ MEAVRSP--AMTYS lamprey_Asbt human SOAT/SLC10A6 -1 E human_NTCP/SLC10A1 human_SLC10A3 human SLC10A4 human_SLC10A5 human SLC10A7 n.meningitidis_Slc10a human_ASBT 46 rabbit Asbt 47 ME ME ME rat_Asbt 46 mouse Asbt 46 chicken_Asbt zebrafish_Asbt 56 47 MF MF MF MF MF skate Asbt 53 lamprey_Asbt 52 human SOAT/SLC10A6 46 human_NTCP/SLC10A1 human_SLC10A3 39 201 FVNKC EVLF 117 ML 152 L GCTVDVNHFGAHVI GCKIELQLFQTVW human SLC10A4 human_SLC10A5 152 NKCAF (RP PVI human SLC10A7 51 KTEE TSA VHLKLHI FLOLLS **FRINEWLI** FR GLTLKPSDFDILFKHPKVVIIGV IAVGV n.meningitidis_Slc10a 48 AQFAIMPATA TTN **Y**LAI * * human_ASBT 139 rabbit Asbt 140 GMMPLO OS rat_Asbt 139 mouse_Asbt 139 chicken_Asbt zebrafish_Asbt 149 140 -KGS MMPLC LIYTTIW MPLC QS PY skate Asbt 146 GMMPLC -KG lamprey_Asbt 145 139 LV LV LV -QG EP human SOAT/SLC10A6 LYIYSRGIYDGDLKDK SAIYSRLLSI-HPM -AV -MI -KGS SAINVGKSIMF AYRMG-VFILA human_NTCP/SLC10A1 human_SLC10A3 132 297 1 AMTELI G-VFILAG<mark>I</mark>RLP LGPELLAS**I**PAA ISK -KPFSFV -G GGLF human SLC10A4 210 CLWTY WAWINTPIVO .C' 7 🗛 IVK --LWSLI VTLVVLFI TGT /IA --RPLSFIL GAISSSVLL PLVSVAAIV human_SLC10A5 IPVSKIV-SII VPFTSIFSQLF 248 IYSRILGL-SGTFF GIYLTFTVG-LVFLKTDNLE IPEKA FLERII ILFI LESSSS TTFCDTFSNPNIDLDKFSL AVVGASKG---KIMESGLL human SLC10A7 148 LI. YTKDWLERKKPPFGATSSS n.meningitidis_Slc10a LGSK 141 EK TDALPLVSV 233 FP 234 FP 233 FP 233 FP 243 FP 234 FP 239 FP 239 FP 239 MP human_ASBT rabbit_Asbt 233 HGNK--ABIPESKE-HGKND-FPDIKD-- Y 2 - Y 2 - Y 2 rat Asbt CHG ND--APFLEKTDmouse_Asbt LGI LGI LA LA SPE SPE YG ND-FLEKTD chicken_Asbt LSE FQ GY) RCVETN--KEVEKREEK LAI LAI LAI zebrafish_Asbt LGE DLA PAE VVAG SFAA GIAN CRHQTL--VEEDGEGT-F Y Y T.SF -GDSDGQGK skate_Asbt WYGRRCR--GDSDGQGK-RKFKKTPPLATSNGTAGL HEQI ABHT FQ lamprey_Asbt human_SOAT/SLC10A6 human_NTCP/SLC10A1 LGE TIVOLSE LLALFTI VLSAIF YKRRLKNKHG-KKNSGCTEV -H\ -EI STI PERVIGPLEF I FOLGEGI YEKFKTPK-----DKTKM NGRC A IYSSLFPVP-----MYGSEML KRDPL EDEDTDI human_SLC10A3 392 QLS KLAFI RRLQADYASQ PPQFIGSMYM LSGTSEMI LFQSAEAG IGHF human SLC10A4 Y/ 307 4FPLLY ΞF PQSKANLASVAPFTVAMCSGCEML VFAGHEHISLISV<mark>PLL</mark>IYHPAQIL JIILVYKAKKRCIFFLQ------GSVLVPTIKSWMVSRQ-----human_SLC10A5 343 human_SLC10A7 242 ES. n.meningitidis_Slc10a NSGLAAALAAAHRAAAPVVAVP--GALF 232 HNG -YLLGFFAAKWTGLP TT TT **BV**G WHNISCSLATYWAAKAGKHKKPG-------terminus human ASBT rabbit_Asbt rat Asbt mouse_Asbt

 anouse_ASDt
 3

 chicken_Asbt
 3

 zebrafish_Asbt
 3

 skate_Asbt
 3

 lamprey_Asbt
 3

 human_SOAT/SLC10A6
 3

 human_NTCP/SLC10A1
 3

 human_SLC10A3
 4

 human_SLC10A5
 4

 human_SLC10A7
 3

 n.meningitidis_Slc10a
 3

Figure S2. Amino acid sequence alignment of SLC10A family members. Sequences were aligned using the ClustalW2 algorithm. Residues with over 50% identity were shaded black and residues with over 50% similarity were shaded gray using the BoxShade 3.21 program. Residues of

hASBT that when mutated abolished ³H-TCA uptake (<25% of control) while membrane localization was sustained are marked with an asterisk (*) above (supplemental references 1-11). The secondary structure of a bacterial homologue from *Neisseria meningitis* (n.meningitidis Slc10a) is indicated below. Transmembrane helices (TM) colored blue are part of the substrate binding pocket, while TM helices colored green are not implicated in substrate binding. Residues that bind or interact with Na⁺ in Slc10a_n.meningitidis are colored red and Asn-265, shown to interact with the 7-hydroxyl group of TCA in *N. meningitidis* Slc10a, is colored yellow. The Nlinked glycosylation site in hASBT is colored purple. The N-termini of SLC10A3, A4 and A5 did not show similarity and are not completely shown. GenBank accession numbers are listed in table S3.

Figure S3. Hydrophobicity plot and predicted transmembrane topology of lpAsbt, skAsbt, hASBT and *N. meningitis* Slc10a (nmSlc10a). Protein sequences were aligned with the ClustalW2 algorithm and hydrophobicity values were calculated with the Toppred 0.01 program using the GES-scale (supplemental reference 12). Transmembrane (TM) helices of the crystal structure of nmSlc10a and putative TM helices predicted with the HMMTOP 2.0 program (supplemental reference 13) are indicated below, accompanied by cytosolic (in) or extracellular (out) localization of the N- and C-termini.

Figure S4. Expression of lpAsbt-FLAG and skAsbt-FLAG fusion proteins in transfected cells. (*A*) Western blot of lpAsbt-FLAG and skAsbt-FLAG expressed in transfected HEK293T cells. Anticipated sizes of lpAsbt-FLAG and skAsbt-FLAG were detected (pointed by arrows) in longer (Center) and shorter (Right) exposures. Lane 1, 1 µg pcDNA3 empty vector transfected cells; lane 2, 1 µg pcDNA3-skAsbt-FLAG construct transfected cells; lane 3, 25 ng pcDNA3-lpAsbt-FLAG + 975 ng pcDNA3 transfected cells; lane 4, 150 ng pcDNA3-lpAsbt-FLAG + 850 ng pcDNA3 transfected cells; lane 4, 150 ng pcDNA3-lpAsbt-FLAG + 850 ng pcDNA3 transfected cells. (*B*) Immunofluorescence confocal microscopy demonstrates that both lpAsbt-FLAG and skAsbt-FLAG (green) can be expressed at least partially on plasma membrane in transfected HEK293T cells. Similar results were also obtained in transfected COS7 cells. Cell nuclei were stained using Topro-3 (blue)

Figure S5. Competition of skAsbt transport function by 5β-scymnol sulfate. COS-7 cells were transfected with skAsbt and incubated for 10 minutes in uptake buffer supplemented with varying concentrations ³H-TCA and 5β-scymnol sulfate. Uptake of cells transfected with vector without insert was considered background and subtracted from measurements. Kinetic constants were calculated by curve fitting of the Michalis-Menten equation to the entire data set in Graphpad Prism 5 (Graphpad software). Data was normalized to total cell protein. Uptake of ³H-TCA had a V_{max} of 90 ± 21 pmol/mg protein/min and a K_m of 87 ± 38 μM. Competitive inhibition by 5β-scymnol sulfate had a K_i of 42 ± 12 μM. These results indicate skAsbt has higher affinity for its endogenous bile salt 5β-scymnol sulfate than for the modern bile salt TCA. Values represent 3 independent experiments and are expressed as means ± SD.

Supplemental References

 Wong MH, Oelkers P, Dawson PA. Identification of a mutation in the ileal sodium-dependent bile acid transporter gene that abolishes transport activity. J Biol Chem. 270(45):27228-34 (1995).
 Oelkers P, Kirby LC, Heubi JE, Dawson PA. Primary bile acid malabsorption caused by mutations in the ileal sodium-dependent bile acid transporter gene (SLC10A2). J Clin Invest. 99(8):1880-7 (1997).

Zhang EY, Phelps MA, Banerjee A, Khantwal CM, Chang C, Helsper F, Swaan PW. Topology scanning and putative three-dimensional structure of the extracellular binding domains of the apical sodium-dependent bile acid transporter (SLC10A2). Biochemistry. 43(36):11380-92 (2004).
 Banerjee A, Ray A, Chang C, Swaan PW. Site-directed mutagenesis and use of bile acid-MTS conjugates to probe the role of cysteines in the human apical sodium-dependent bile acid transporter (SLC10A2). Biochemistry. 44(24):8908-17 (2005).

5. Hussainzada, N., Banerjee, A. & Swaan, P. W. Transmembrane domain VII of the human apical sodium-dependent bile acid transporter ASBT (SLC10A2) lines the substrate translocation pathway. Mol. Pharmacol. 70, 1565–1574 (2006).

6. Hussainzada N, Khandewal A, Swaan PW. Conformational flexibility of helix VI is essential for substrate permeation of the human apical sodium-dependent bile acid transporter. Mol Pharmacol. 73(2):305-13 (2008).

7. Banerjee A, Hussainzada N, Khandelwal A, Swaan PW. Electrostatic and potential cation-pi forces may guide the interaction of extracellular loop III with Na+ and bile acids for human apical Na+-dependent bile acid transporter. Biochem J. 410(2):391-400 (2008).

 Khantwal CM, Swaan PW. Cytosolic half of transmembrane domain IV of the human bile acid transporter hASBT (SLC10A2) forms part of the substrate translocation pathway. Biochemistry. 47(12):3606-14 (2008).

9. Hussainzada N, Da Silva TC, Zhang EY, Swaan PW. Conserved aspartic acid residues lining the extracellular loop 1 of sodium-coupled bile acid transporter ASBT Interact with Na+ and

11

7alpha-OH moieties on the ligand cholestane skeleton. J Biol Chem. 283(30):20653-63 (2008).
10. Hussainzada N, Claro Da Silva T, Swaan PW. The cytosolic half of helix III forms the substrate exit route during permeation events of the sodium/bile acid cotransporter ASBT.
Biochemistry. 48(36):8528-39 (2009).

11. da Silva TC, Hussainzada N, Khantwal CM, Polli JE, Swaan PW. Transmembrane helix 1 contributes to substrate translocation and protein stability of bile acid transporter SLC10A2. J Biol Chem. 286(31):27322-32 (2011).

12. von Heijne, G. (1992) Membrane Protein Structure Prediction: Hydrophobicity Analysis and the 'Positive Inside' Rule. J.Mol.Biol. 225, 487-494.

 G.E Tusnády and I. Simon (2001) The HMMTOP transmembrane topology prediction server" *Bioinformatics* 17, 849-850