Electrochemical direct detection of DNA deamination catalyzed by APOBEC3G

Junya Chiba,*^{*a*} Takahide Kouno,*^{*b*} Shun Aoki,^{*a*} Hitoshi Sato,^{*a*} JingYing Zhang,^{*b*} Hiroshi Matsuo^{*b*} and Masahiko Inouye^{*a*}

^{*a*} Graduate School of Pharmaceutical Sciences, University of Toyama, Sugitani 2630, Toyama 930-0194, Japan.

^b Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, 1-130 Nils Hasselmo Hall, Minneapolis, MN 55455, USA.

Materials and Methods

Preparation of A3G protein and nucleotides

The A3G CTD, spanning residues 193-384, was expressed in BL21 (DE3) (Agilent Technologies) and purified as described previously.^{s1} Additionally, the protein was purified by gel chromatography using a Superdex 75 column (GE Healthcare) with a running buffer (50 mM sodium phosphate, pH 7.3, 100 mM NaCl, 0.005% Tween 20, 1 mM DTT). The purity of A3G CTD protein was confirmed by SDS-PAGE, and the protein concentration was estimated according to the absorbance at 280 nm and the theoretical value of molar extinction coefficient ($\epsilon = 40,450$). Single-strand DNAs, 15-mer nucleotides 15-CCC (5'-GGATTCCCAATTGAG-3'), 15-CCU (5'-GGATTCCdUAATTGAG-3'), and 15-CUU (5'-GGATTCCdUdUAATTGAG-3') were synthesized and purified by HPLC (Integrated DNA technologies).

Preparation of DNA probes and immobilization of the DNA probes onto gold electrodes

DNA	probes	Fc-GGG	(5'-Fc-CTCAAT	TGGGAATCC-(CH ₂)) ₃ -SH-3'),	Fc-GGA
(5'-Fc-CTC	CAATTAGO	GAATCC-(CH2	2) ₃ -SH-3'),			Fc-GAA
(5'-Fc-CTC	CAATTAAC	GAATCC-(CH2	2) ₃ -SH-3'),			Fc-GAG
(5'-Fc-CTC	CAATTGAC	GAATCC-(CH2	2) ₃ -SH-3'),			Fc-AGG
(5'-Fc-CTC	CAATTGGA	AATCC-(CH2	2) ₃ -SH-3'),			Fc-AAA
(5'-Fc-CTC	CAATTAAA	AATCC-(CH2	2) ₃ -SH-3'),	and		Fc-AGA

(5'-Fc-CTCAATTAGAAATCC-(CH₂)₃-SH-3') were synthesized according to a procedure previously reported.^{52,s3} Commercially available gold electrodes (Tanaka Kikinzoku, Tokyo, Japan) were cleaned as a reported procedure^{52,s3} and dried under argon stream before use. For immobilization of DNA probes, 1 μ L of a probe DNA (100 μ M) in a buffer solution (10 mM phosphate buffer that contained 1 M NaClO₄, pH 7.0) was placed on the gold electrode and kept in a closed container under high humidity for 90 min at room temperature. After having been rinsed with the buffer solution (300 μ L), the probe DNA-modified gold electrode was soaked in a solution of 1 mM

6-mercaptohexan-1-ol in the buffer solution contained 1% Tween 20 (300 μ L) for 90 min at room temperature. Then, it was thoroughly washed with Milli-Q water and the buffer solution successively. For hybridization of target DNAs, 5 μ L of a target DNA (10 μ M) in the buffer solution was placed on the probe-modified gold electrode and kept in a closed container under high humidity for 90 min at room temperature, then it was rinsed with the buffer solution (300 μ L).

Deamination reaction

The deamination reaction was performed in a buffer (50mM sodium phosphate, pH7.3, 100mM NaCl, 0.005% Tween 20, 1mM DTT) at 20°C with 10 μ M A3G CTD and 10 μ M substrate nucleotide, 15-CCC. After incubation for 30 min to 24 hours, 60 μ l of the reaction mixture was mixed with 6 μ l of phenol/chloroform/isoamyl alcohol (25:24:1) to terminate the reaction, and then centrifuged at 18,000 x g for 2 min. 50 μ l of the supernatant was applied to a centri-spin 10 column (Princeton separations) to remove buffer salts. The elute was lyophilized and stored at -30°C for further analysis.

Electrochemical measurements

Square-wave voltammetry (SWV) measurements was carried out as previously reported.^{s2} The buffer solution (10 mM phosphate buffer that contained 1 M NaClO₄, pH 7.0) was used as the electrolyte solution for all electrochemical studies. SWV measurement was carried out at 25 °C on the probe-modified electrodes by means of a normal three-electrode configuration consisting of the gold working electrode, a saturated Ag/AgCl reference electrode, and a platinum wire auxiliary electrode. The working compartment of the electrochemical cell was separated from the reference compartment by a glass frit.

Probe	Optimized frequency (Hz)	Complementary hybrid	Mismatched hybrid	Normalized Peak Current Ratio [mismatched] / [complementary]
Fc-GGG	40	CCC	CCU	0.10 ± 0.07
Fc-GGA	90	CCU	CCC	0.23 ± 0.19
Fc-GAA	100	CUU	CCU	0.05 ± 0.02
Fc-AGG	60	UCC	CCC	0.13 ± 0.04
Fc-GAG	140	CUC	CCC	0.32 ± 0.06
Fc-AAA	110	UUU	CUU	0.04 ± 0.01
Fc-AGA	120	UCU	CCU	0.20 ± 0.15

Table S1. Optimized frequency for each voltammetry measurement

References for ESI

s1 K. M. Chen, E. Harjes, P. J. Gross, A. Fahmy, Y. Lu, K. Shindo, R. S. Harris and H. Matsuo, *Nature*, 2008, **452**, 116.

s2 (a) R. Ikeda, S. Kobayashi, J. Chiba and M. Inouye, *Chem. Eur. J.* 2009, **15**, 4822. (b) R. Ikeda, S. Kitagawa, J. Chiba and M. Inouye, *Chem. Eur. J.* 2009, **15**, 7048. (c) J. Chiba, A. Akaishi, R. Ikeda and M. Inouye, *Chem. Commun.*, 2010, **46**, 7563.

s3 (a) M. Inouye, R. Ikeda, M. Takase, T. Tsuri and J. Chiba, *Proc. Natl. Acad. Sci. U.S.A.*, 2005,
102, 11606. (b) R. Ikeda, J. Chiba and M. Inouye, *e-J. Surf. Sci. Nanotechnol.*, 2005, 3, 393. (c)
R. Ikeda, A. Akaishi, J. Chiba and M. Inouye, *ChemBioChem*, 2007, 8, 2219.