The form of nitrogen nutrition affects resistance against *Pseudomonas syringae* pv. *phaseolicola* in tobacco

Kapuganti J. Gupta, Yariv Brotman, Shruthi Segu, Tatiana Zeier⁵, Jürgen Zeier, Stefan T. Persijn, Simona M. Cristescu, Frans J. M. Harren[,] Hermann Bauwe, Alisdair R. Fernie, Werner M. Kaiser, Luis A. J. Mur

Supplementary Table 1: Loading vectors for PCA models shown in Fig. 5A, B and C which analyse metabolite changes occurring in NO_3^- or NH_4^+ - in tobacco leaves following mock and actual inoculation with *Pseudomonas syringae* pathovar *phaseolicola*

	Fig. 5A		Fig. 5B		Fig. 5C	
	Mock		NO ₃ treated		NH ₄ +-treated	
	PC1	PC2	PC1	PC2	PC1	PC2
4-aminobutyric acid	0.189908	0.077565	0.08243	0.08763	0.1452	0.146334
Galactose	0.05578	0.674438	0.053127	0.65843	-0.2877	0.274565
Fumarate	0.6234	0.16878	0.602465	0.09085	0.52104	-0.19512
Glutamine	0.2147	0.6877	0.192641	0.535432	-0.09445	0.579814
Glutamate	0.04377	0.5432	-0.15874	0.2874	0.095644	0.200134
Inositol	0.05324	0.3348	-0.00747	0.4015	-0.18766	0.146521
Malate	0.6114	-0.5687	0.388412	0.1657	0.44351	-0.11745
Proline	0.061011	0.4125	-0.20876	0.209144	0.10457	0.19674
Putrescine	0.0954	0.11636	0.19833	-0.7223	0.401121	0.501247
Spermidine	-0.04714	0.02751	0.212	0.2247	0.004574	0.00784

Supplementary Figure 1: Nitrate reductase dependent effects on the hypersensitive response HR elicited by *Pseudomonas syringae* pv. *phaseolicola* in tobacco

(A). Nitric oxide production in detected wild type tobacco leaves or *Nia30* nitrate reductase suppressed lines following inoculation with avirulent *Pseudomonas syringae* pv. (*P. s.* pv.) *phaseolicola* (*Psph*) using a Quantum Cascade Laser (QCL). For comparative purposes NO production from mock-inoculated (10 mM MgCl₂) detached leaves of wild type tobacco (**B**) Electrolyte leakage from leaf discs sampled from areas of either NO₃⁻ or NH₄⁺ fed wild type plants or or the *nia30* line and inoculated with *Psph*, (**C**) *Psph* populations 1 cm² diameter explants from in NO₃⁻ or NH₄⁺ -fed tobacco and *nia30* plants at 3 (grey boxes) and 7 (black boxes) days with *Psph* (n = 6 ± SD).

Supplementary Figure 2: Multivariate analyses of metabolite profiles of in NO_3^- and NH_4^+ -fed tobacco leaves following inoculation with *Pseudomonas syringae* pathovar *phaseolicola*

(A) Principal Component Analysis (PCA) of 150 metabolites detected by Gas Chromatography Mass Spectrometry (GC-MS) in NO_3^- and NH_4^+ -fed tobacco leaves following inoculation with *Pseudomonas syringae* pathovar *phaseolicola* (*Psph*) or mock inoculation with 10 mM MgCl₂. (B) Discriminant Function Analyses (DFA) of the same data as analysed in A. Clustering of treatment and timepoint groups is seen in NO_3 and NH_4 fed 24 hpi samples d as delineated in the plot. DFA was carried out on 5 PCs explaining 93.4% of the total variation. Discriminant Function (DF) 1 and 2 are plotted

Supplementary Figure 3: Galactose and glycolytic metabolite accumulation in NO_3^- and NH_4^+ -fed tobacco leaves following inoculation with Pseudomonas syringae pathovar phaseolicola or 10 mM MgCl2.

(A) Galactose contributes to a number of biochemical pathways but a link to glycolytic metabolism is shown. Broken arrows indicate multiple biochemical steps. Metabolites were detected by Gas Chromatography Mass Spectrometry (GC-MS) in NO_3^- and NH_4^+ -fed tobacco leaves following inoculation with Pseudomonas syringae pathovar phaseolicola (*Psph*) or mock inoculation with 10 mM MgCl₂. hpi = hours following inoculation. Shown are the results for, (**B**) glucose-1-phosphate (P); (**C**) glucose-6-phosphate (P) and (**D**) fructose – 6-phosphate (P). Data are displayed as % relative intensity (RI). Data sets marked with a, b or c within each graph, indicate groupings within which non-significant differences were observed but were significantly different (*adjusted P* < 0.05) from all other groups

Supplementary Figure 4: Amino acid accumulation in NO₃⁻ and NH₄⁺ -fed tobacco leaves following inoculation with Pseudomonas syringae pathovar phaseolicola or 10 mM MgCl2.

Amino acids were detected by Gas Chromatography Mass Spectrometry (GC-MS) in NO₃⁻ and NH₄⁺⁻ fed tobacco leaves following inoculation with P*seudomonas syringae* pathovar *phaseolicola* (*Psph*) or mock inoculation with 10 mM MgCl₂. Samples designated with either 4, 8 and 24 refer to hours following inoculation; N = NO₃⁻ fed; A = NH₄⁺ fed plants. M = Mock inoculated. Samples with no M, indicate samples inoculated with *Psph*. Data are displayed as % relative intensity (RI). Data sets marked with a, b or c within each graph, indicate groupings within which non-significant differences were observed but were significantly different (*adjusted P* < 0.05) from all other groups