

Supplemental Material to:

Oliver Voigt and Stefanie Pöggeler

Autophagy genes *Smatg8* and *Smatg4* are required 1 for fruiting-body 2 development, vegetative growth and ascospore germination in the filamentous 3 ascomycete *Sordaria macrospora*

> Autophagy 2013; 9(1) http://dx.doi.org/10.4161/auto.22398

www.landesbioscience.com/journals/autophagy/article/22398

Figure S1. Generation and complementation of a Δ Smatg8 strain. (A) Schematic illustration of the *Smatg8* locus before and after homologous integration of the deletion cassette, primer position used for the verification of the deletion and complementation are indicated by small arrows. Sizes of PCR fragments and fragments obtained after restriction enzyme cleavage are given. Position and size of the probe used for southern hybridization is indicated. (B) Southern hybridization (Sambrook et al., 2001) demonstrating the successful integration of the deletion cassette using an *hph* gene specific probe. The gDNA of wt and Δ Smatg8 and complementation strain Δ Smatg8::Smatg8 was digested with *Bg/*II and hybridized with the *hph*-gene specific probe. An expected signal of 4400 bp was detected in the deletion and the complemented strain. (C) Deletion and complementation was confirmed by PCR.

Figure S2. Construction of a *Smatg4* deletion strain. (A) Schematic illustration of the *Smatg4* locus before and after gene replacement. Positions of primers for deletion and complementation analysis are indicated by small arrows. Sizes of PCR fragments and fragments obtained after restriction enzyme cleavage are given. Position and size of the probe used for Southern hybridization is indicated. (B) Southern hybridization with a *hph* probe to verify single copy integration of the *Smatg4* deletion cassette. The gDNA of wt, Δ Smatg4 and the complemented strain Δ Smatg4::Smatg4 was digested with *Pst*I and *Bg*/II and hybridized with the *hph*-gene specific probe. An expected signal of 4900 bp was detected in the deletion and the complemented strain. (C) Deletion and complementation was confirmed by PCR.

Table S1Plasmids used during this study

Plasmid	Features/Inserts	Source
pRS246	URA3	Christianson et al. (1992)
pRSnat	URA3, nat-cassette	Klix et al. (2010)
pDS23-eGFP	<i>egfp</i> under control of <i>gpd</i>	Nowrousian unpublished
-	promoter and <i>trpC</i> terminator	-
	of A. nidulans, URA3, nat-	
	cassette	
p1783	<i>egfp</i> under control of <i>gpd</i>	Pöggeler et al. (2003)
-	promoter and <i>trpC</i> terminator	
	of A. nidulans, hph-cassette	
pRS426-met25	<i>met25</i> promoter, <i>URA3</i> , amp^{R}	Mumberg et al., 1994
pGBKT7	<i>TRP1</i> , <i>GAL4-BD</i> , kan ^R	Clonetech
pGADT7	$LEU2, GAL4-AD, amp^{R}$	Clonetech
pRSmet-Smatg8	Smatg8 under control of	This work
	<i>met25</i> promoter, URA3,	
	amp^{R} ,	
pRSmet-Smatg4	Smatg4 under control of	This work
	<i>met25</i> promoter, URA3,	
	amp^{R} ,	
pRS315-EGFP-Atg8	LEU2, amp ^R , egfp-atg8	M. Thumm, Göttingen ^a
	under control of endogenous	
	promoter	
pRS316-Atg4	URA3, amp ^R , <i>atg4</i> under	M. Thumm, Göttingen ^a
	control of endogenous	
	promoter	
pBD-Smatg8	<i>TRP1</i> , <i>GAL4-BD</i> , kan ^R ,	This work
	Smatg8	
pBD-Smatg4	<i>TRP1</i> , <i>GAL4-BD</i> , kan ^R ,	This work
	Smatg4	
pAD-Smatg8	$LEU2, GAL4-AD, amp^{R},$	This work
	Smatg8	
pAD-Smatg4	$LEU2, GAL4-AD, amp^{R},$	This work
	Smatg4	
pAD-RAN-Bpm	$LEU2, GAL4-AD, amp^{R},$	Tucker et al. (2009)
	RanBPM	
pDsRed-SKL	DsRed-SKL under control of	Elleuche and Pöggeler (2008)
	<i>gpd</i> promoter and <i>trpC</i>	
	terminator of A. nidulans, in	
	pRHN1	
pRS-∆Smatg8	1023 bp of the 5' flanking	This work
	region and 1021 bp of 3'	
	flanking region of Smatg8	
	interrupted by the	
	<i>hph</i> -cassette in pRSnat	
pRS-∆Smatg4	1031 bp of 5' flanking region	This work
	and 468 bp of 3' region plus	
	214 bp flanking region of	
	Smatg4 disrupted by the hph-	

	cassette in pRSnat	
pRS-Smatg8-comp	Smatg8 plus 1023 bp of 5'	This work
	and 1021 bp of 3' flanking	
	region in pRSnat	
pRS-Smatg4-comp	<i>Smatg4</i> plus 1031 bp of 5'	This work
	and 214 bp of 3' flanking	
	region in pRSnat	
pRS-egfp-Smatg8	1023 bp of the 5' flanking	This work
	region of Smatg8, egfp	
	excluding stop codon,	
	Smatg8 without start codon	
	and 1021 bp of 3' flanking	
	region of <i>Smatg8</i> in pRSnat	
pRS-Smatg8-egfp	Smatg8 excluding stop codon	This work
	in pDS23-eGFP	
pRS-egfp-Smatg8mut	Smatg8 excluding stop codon	This work
	in pDS23-eGFP, AA	
	115-118 substituted with	
	alanine	
pRS-Smatg4-egfp	<i>Smatg4</i> excluding stop codon	This work
	in pDS23-eGFP	
pRS-egfp-Smatg8 ^{G116}	Smatg8 C-terminally	This work
	truncated (AA 1-116) in	
	pDS23-eGFP	
pRS-egfp-Smatg8-	1023 bp of the 5' flanking	This work
DsRedSKL	region of <i>Smatg8</i> , egfp	
	exluding stop codon, Smatg8	
	without start codon and 1021	
	bp of 3' flanking region of	
	Smatg8 and DsRed-SKL	
	under control of gpd	
	promoter and $trpC$ terminator	
	of A. nidulans, in pRSnat	

Table S2 Primers applied in this study

Oligo name	Specific sequence (5'-3') ^b
atg8-5f	GTAACGCCAGGGTTTTCCCAGTCACGACGGACGACTTCAC
	AGTGACATC
atg8-5r	CAAAAAATGCTCCTTCAATATCAGTTAACGATCTCATTTTG
	GCGGTTTG
atg8-3f	GAGTAGATGCCGACCGGGAACCAGTTAACGATTTCGAGAC
	TGCGTAATC
atg8-3r	<u>GCGGATAACAATTTCACACAGGAAACAGC</u> GACGCAGCCCT
	TTGTTTCCC
atg4-5f	GTAACGCCAGGGTTTTCCCAGTCACGACGATATCGTTTGCC
	GCTTGGTC
atg4-5r	<u>CAAAAAATGCTCCTTCAATATCAGTTAACG</u> AATCTCTTGAA
	TGCCCAGA
atg4-3f	<u>GAGTAGATGCCGACCGGGAACCAGTTAAC</u> AGGTATAGCCG
	GGTGAGTCC
atg4-3r	<u>GCGGATAACAATTTCACACAGGAAACAGC</u> AGAGTCCTTTG
	TTCTATCAT
atg8-5D1	CGAACGGAGAAGGCGGACAC
atg8-3D1	CAGTTGCGATACATTACAAC
atg8-ver-f	CAAGTTTAAGGACGAGCACCCCTTC
atg8-ver-r	GAAGGTGTTCTCGCCCGAGTATGTG
atg4-5D1	CTGCATGAAAGGTAAAGAGG
atg4-3D1	CTCTGGCTGACAATATTTCC
atg4-ver-f	ATGACGTCCTCGCGACCTGGTGGCAC
atg4-ver-r	ATCGACTGAGGTAACTGTAGAGTTG
Atg8-cf	ACTAGTATGAGATCCAAGTTTAAGGA
Atg8-cr	<i>GTCGAC</i> TTACGCAGTCTCGAAAT
atg4-cf	ACTAGTATGACGTCCTCGCGACCTGG
atg4-cr	<i>GTCGAC</i> TTATGCTCCTAGAGCGGTTT
atg8-RT-f	GGCCAGTTCGTTTACGTCAT
atg8-RT-r	GTGTTCTCGCCCGAGTATGT
atg4-RT-f	GTCTTTGGCGTACGAAGAGC
atg4-RT-r	GTTTGCGAGAAGGCTTTGAC
atg8-Hf	CATATGAGATCCAAGTTTAAGGACGA
atg8-Hr	<i>GAATTC</i> GCTTACGCAGTCTCGAAATCGC
atg4-Hf3	<i>GAATTCCCC</i> ATGACGTCCTCGCGACCTGG
atg4-Hr3	CTCGAGGGTTATGCTCCTAGAGCGGTTT
atg4-Hr	GTCGACGCTTATGCTCCTAGAGCGGTTT
atg8-egfp-5r	<u>GTGAACAGCTCCTCGCCCTTGCTCACCAT</u> TTTGGCGGTTTG
	CTTTGATG
atg8-egfp-3f	TCACTCTCGGCATGGACGAGCTGTACAAGAGATCCAAGTT
	TAAGGACGA
atg8-egfp-3r	<u>GCGGATAACAATTTCACACAGGAAACAGC</u> GTGTACTACCT
	ATCATGTAT
atg8-gf	<i>GCGAGATCT</i> ATGAGATCCAAGTTTAAGGAC
atg8-gr	CGCAAGCTTCGCAGTCTCGAAATCGCCGA
atg8-gr2	CGCAAGCTTCGCAGTCTCGGCGGCGGCGGCGGCGGTGTTCTCGC

	CCGAGTAT
atg4-gf	GCGCCATGGCCACGTCCTCGCGACCTGGTGG
atg4-gr	CGCCCATGGCTGCTCCTAGAGCGGTTTCTC
atg8pegfp-5r	GCCGAAGGTGTTCTCGCCCG
atg8pegfp-3f	TCACATACTCGGGCGAGAACACCTTCGGCT
	AATCCATATCCTCTCTACC
atg8-5f3	<u>GTAACGCCAGGGTTTTCCCAGTCACGACG</u> TTTATGTTGTAA
_	TAGACGGG
atg8-org-5r2	GTGTACTACCTATCATGTATTTCTA
atg8-org-3f	AGCTTAGAAATACATGATAGGTAGTACACGTACAGTGACC
	GGTGACTCT
MiPe-r2	<u>GCGGATAACAATTTCACACAGGAAACAGC</u> TCGAGTGGAGA
	TGTGGAGTG
hph-f	GTTAACTGATATTGAAGGAGCATTTTTTGG
hph-r	GTTAACTGGTTCCCGGTCGGCATCTACTC
tC1	CACCGCCTGGACGACTAAACC
tc1-o	CCTGGACGACTAAACCAAAA
h3-o	GATGGCTGTGTAGAAGTACT
egfp-f	ATGGTGAGCAAGGGCGAGGAGCTGTTCAC
egfp-r	CTTGTACAGCTCGTCCATGCCGAGAGTGA
ssu-f	ATCCAAGGAAGGCAGCAGGC
ssu-r	TGGAGCTGGAATTACCGCG

^a, Department of Biochemistry II, Georg-August University Göttingen, Germany ^b, Underlined sequences represent 29 bp overhangs for homologous recombination in *S.cerevisiae* and letters in italics indicate generation of restriction sites.