Table S1. Strains Used in This Study, Related to Experimental Procedures

Name	Genotype	Construction	Reference/Source
C. crescentus			
CB15N	Synchronizable variant of wild-type strain CB15		Evinger & Agabian, 1977
CS606	CB15N Δ <i>blaM</i>		West et al., 2002
EK61	CB15N P _{xyl} ::P _{xyl} -mcherry-CC1398		Werner et al., 2009
EK363	CB15N P _{xyl} ::P _{xyl} -pstS-mcherry	Transformation of CB15N with pEK301	This work
EK389	CB15N ΔstpAB P _{xyl} ::P _{xyl} -pstS-mcherry	Transformation of SW51 with pEK301	This work
EK392	CB15N P _{xyl} ::P _{xyl} -yfp	Transformation of CB15N with pXYFPN-5	This work
EK393	CB15N Δ <i>stpAB</i> P _{xyl} ::P _{xyl} -mcherry	Transformation of SW51 with pXCHYN-5	This work
EK416	CB15N P _{xyl} ::P _{xyl} -mcherry	Transformation of CB15N with pXCHYN-5	This work
EK417	CB15N $\Delta stpAB P_{xyl}::P_{xyl}-yfp$	Transformation of SW51 with pXYFPN-5	This work
EK424	CB15N pstS::miniTn5LacZ Pxyl::Pxyl-pstS-mcherry	Transformation of EK425 with pEK301	This work
EK425	CB15N pstS::miniTn5LacZ	Transduction of kan ^R from YB2811	This work
EK486	CB15N $\Delta stpCD$ $P_{xyl}::P_{xyl}-yfp$	Transformation of SS250 with pXYFPN-5	This work
EK487	CB15N ΔstpCD P _{xyl} ::P _{xyl} -mcherry	Transformation of SS250 with pXCHYN-5	This work
GB255	CB15N popZ::Ω		Bowman et al., 2008
JK5	CB15N Δ <i>bacAB</i>		Kühn et al., 2010
MT304	CB15N Δ <i>pbpC</i>		Kühn et al., 2010
NR4042	CB15N ΔstpX		Viollier, P. H. (unpubl.)
PV5064	CB15N stpX::stpX-gfp		Hughes et al., 2010
SS141	CB15N $\Delta stpA$ P_{xyl} :: P_{xyl} -stpB-mcherry	Transformation of SW49 with pSW32	This work
SS142	CB15N $\triangle stpB$ $P_{xyl}::P_{xyl}$ - $stpA$ - $mcherry$	Transformation of SW50 with pSW35	This work
SS160	CB15N stpB-mCherry	Gene replacement in CB15N with pSS109	This work
SS165	CB15N $\Delta bla P_{xyl}::P_{xyl}-stpB-bla$	Transformation of CS606 with pSS120	This work
SS167	CB15N $\Delta pbpC$ $P_{xyl}::P_{xyl}$ -stpB-mcherry	Transformation of MT304 with pSW32	This work
SS172	CB15N $\Delta bla P_{xyl}::P_{xyl}-stpA-bla$	Transformation of CS606 with pSS119	This work
SS191	CB15N ftsZ::P _{xyl} -ftsZ P _{van} ::P _{van} -stpB-mcherry	Transformation of YB1585 with pSS142	This work
SS213	CB15N $\Delta stpX$ $P_{xyl}::P_{xyl}$ -stpB-mcherry	Transduction of kan ^R from SW30 to NR4042	This work
SS214	CB15N stpB::stpB-mcherry pPxyl-stpAB	Transformation of SS160 with pSW64	This work
SS216	CB15N Δ <i>stpAB</i> pP _{xyl} -TAT- <i>tdimer2</i>	Transformation of SW51 with pEJ216	This work
SS220	CB15N ΔstpA stpB::stpB-His	Transformation of SW49 with pSS187	This work
SS224	CB15N <i>divJ</i> ::Ω P _{xyl} ::P _{xyl} -stpB-mcherry	Transduction of spec ^R from YB3202 to SW30	This work
SS228	CB15N P _{xyl} ::P _{xyl} -stpC-mcherry	Transformation of CB15N with pSS204	This work
SS233	CB15N stpB::stpB-His	Transformation of CB15N with pSS187	This work
SS234	CB15N $\Delta stpAB P_{xyl}::P_{xyl}-stpD-gfp$	Transformation of SW51 with pSS202	This work
SS236	CB15N $\triangle stpAB P_{xyl} :: P_{xyl} - stpC-mcherry$	Transformation of SW51 with pSS204	This work
SS239	CB15N Δ <i>stpC</i>	Gene replacement in CB15N using pSS209	This work
SS240	CB15N ΔstpC P _{xyl} ::P _{xyl} -stpD-gfp	Transformation of SS239 with pSS202	This work
SS243	CB15N $stpD$:: $stpD$ - gfp P_{xyl} :: P_{xyl} - $stpA$ - $mcherry$	Transformation of SW33 with pSS205	This work
SS244	CB15N stpD::stpD-His	Transformation of CB15N with pSS206	This work
SS247	CB15N stpC::stpC-His	Transformation of CB15N with pSS210	This work
SS248	CB15N stpD::stpD-gfp	Transformation of CB15N with pSS205	This work
SS250	CB15N ΔstpCD	Gene replacement in SS239 using pSS208	This work
SS252	CB15N ΔstpD	Gene replacement in CB15N using pSS208	This work
SS258	CB15N stpB::stpB-mcherry pBXMCS-2	Transformation of SS160 with pBXMCS-2	This work
SS263	CB15N ΔstpD P _{xyl} ::P _{xyl} -stpC-mcherry	Transformation of SS252 with pSS204	This work
SS264	CB15N $\triangle stpB$ P_{xyl} :: P_{xyl} - $stpD$ - gfp	Transformation of SW50 with pSS202	This work
SS265	CB15N ΔstpB P _{xyl} ::P _{xyl} -stpC-mcherry	Transformation of SW50 with pSS204	This work
SS269	CB15N stpD::stpD-gfp pP _{xyl} -TATdimer2	Transformation of SS248 with pEJ216	This work
SS272	CB15N Δ <i>stpAB</i> P _{xyl} ::P _{xyl} - <i>gspG-mcherry</i>	Transformation of SW51 with pJK86	This work
SS273	CB15N $\Delta bla P_{xyl}::P_{xyl}-stpC-blaM$	Transformation of CS606 with pSS220	This work
SS274	CB15N $\Delta bla P_{xyl}::P_{xyl}-stpD-blaM$	Transformation of CS606 with pSS221	This work
SS277	CB15N $stpD::stpD-gfp\ P_{xyl}::P_{xyl}-gspG-mcherry$	Transformation of SS248 with pJK86	This work
SS281	CB15N $\Delta bacAB$ P_{xyl} :: P_{xyl} -stpB-mcherry	Transformation of JK5 with pSW32	This work
SS283	CB15N stpD::stpD-gfp Pxyl::Pxyl-elpS-mcherry	Transformation of SS248 with pSW67	This work
SS284	CB15N ΔstpAB P _{xyl} ::P _{xyl} -elpS-mcherry	Transformation of SW51 with pSW67	This work
SS292	CB15N $popZ::\Omega$ $P_{xyl}::P_{xyl}$ -stpB-mcherry	Transformation of GB255 with pSW32	This work
SS294	CB15N ΔstpAB P _{xyl} ::P _{xyl} -malA-mcherry	Transformation of SW51 with pSS227	This work

Table S1. Strains Used in This Study (continued)

Name	Relevant Genotype/Description	Construction	Reference/Source
SS297	CB15N stpD::stpD-gfp P _{xyl} ::P _{xyl} -malA-mcherry	Transformation of SS248 with pSS227	This work
SS299	CB15N stpD::stpD-gfp P _{xyl} ::P _{xyl} -pstS-mcherry	Transformation of SS248 with pJK101	This work
SS302	CB15N ΔstpAB P _{xyl} ::P _{xyl} -pstS-mcherry	Transformation of SW51 with pJK101	This work
SS304	CB15N ΔstpCD pP _{xyl} -TAT-tdimer2	Transformation of SS250 with pEJ216	This work
SS388	CB15N stpD::stpD-gfp stpB::stpB-mcherry	Transformation of SS160 with pSS205	This work
SS389	CB15N stpD::stpD-gfp stpC::stpC-mcherry	Transformation of SS248 with pSS310	This work
SS412	CB15N stpB::stpB-mcherry	Transformation of CB15N with pSS309	This work
SS413	CB15N stpC::stpC-mcherry	Transformation of CB15N with pSS310	This work
SS414	CB15N \triangle stpA stpB::stpB-mcherry	Transformation of SW49 with pSS309	This work
SS415	CB15N \triangle stpAB stpC::stpC-mcherry	Transformation of SW51 with pSS310	This work
SW30	CB15N P _{xvl} ::P _{xvl} -stpB-mcherry	Transformation of CB15N with pSW32	This work
SW33	CB15N P _{xyl} ::P _{xyl} -stpA-mcherry	Transformation of CB15N with pSW35	This work
SW49	CB15N ΔstpA	Gene replacement in CB15N using pSW51	This work
SW50	CB15N ΔstpB	Gene replacement in CB15N using pSW52	This work
SW51	CB15N ΔstpAB	Gene replacement in CB15N using pSW53	This work
YB1585	CB15N ftsZ::P _{xyl} -ftsZ		Wang et al., 2001
YB2811	NY111d1 pstS::miniTn5LacZ		Ireland et al., 2002
YB3202	CB15N divJ::Ω		Pierce et al., 2006
YB5058	CB15N stpX::StpX-gfp Pxyl::Pxyl-stpB-mCherry	Transduction of spec ^R from PV5064	This work
YB5059	CB15N ΔstpAB stpX::stpX-gfp	Transduction of spec ^R from PV5064	This work
YB5231	CB15N Δ <i>stpX</i>		Hughes et al., 2010
A. excentricus			
CB48	Wild-type strain		Poindexter, 1964
SS309	CB48 Astex_0987::Astex_0987-mcherry	Transformation of CB48 with pSS229	This work
E. coli			
TOP10	General cloning strain		Invitrogen

Table S2. General Plasmids Used in This Study, Related to Experimental Procedures

Name	Description	Reference/Source
pBXMCS-2	Replicating plasmid for the inducible overexpression of genes in CB15N, Kan ^R	Thanbichler et al., 2007
pCHYC-1	Plasmid for integrating genes encoding C-terminal fusions to the red fluorescent protein mCherry at the native gene locus, Spec/Str ^R	Thanbichler et al., 2007
pEJ216	Replicating plasmid carrying TAT-dimer2 under control of P _{xyl} , Cam ^R	Judd et al., 2005
pJAMY31	Kan ^R ColE1 replicon, β-lactamase translational fusion vector	Alley, M. R. K. (unpubl.)
pNPTS138	sacB-containing suicide vector used for double homologous recombination, Kan ^R	Alley, M. R. K. (unpubl.)
pTCYC-2	Plasmid for integrating C-terminal fusions to the tetracysteine tag at the native gene locus, Spec/Str ^R	Thanbichler et al., 2007
pVCHYC-1	Plasmid for integrating genes encoding C-terminal fusions to the red fluorescent protein mCherry at the chromosomal <i>vanA</i> locus, Spec/Str ^R	Thanbichler et al., 2007
pXCHYC-2	Plasmid for integrating genes encoding C-terminal fusions to the red fluorescent protein mCherry at the chromosomal <i>xylX</i> locus, Kan ^R	Thanbichler et al., 2007
pXCHYC-5	Plasmid for integrating genes encoding C-terminal fusions to the red fluorescent protein mCherry at the chromosomal <i>xylX</i> locus, Tet [®]	Thanbichler et al., 2007
pXCHYN-5	Plasmid for integrating genes encoding N-terminal fusions to the red fluorescent protein mCherry at the chromosomal xylX locus, Tet [®]	Thanbichler et al., 2007
pXGFPC-2	Plasmid for integrating genes encoding C-terminal fusions to the green fluorescent protein GFP at the chromosomal <i>xy/X</i> locus, Kan ^R	Thanbichler et al., 2007
pXYFPC-5	Plasmid for integrating genes encoding C-terminal fusions to the yellow fluorescent protein eYFP at the chromosomal xy/X locus, Tet [®]	Thanbichler et al., 2007
pXYFPN-5	Plasmid for integrating genes encoding N-terminal fusions to the yellow fluorescent protein eYFP at the chromosomal xy/X locus, Tet^R	Thanbichler et al., 2007

Table S3. Plasmids Generated in This Study, Related to Experimental Procedures

Name	Description	Construction
pEK301	pXCHYC-2 carrying pstS	a) amplification of the pstS gene using primers EK225/EK226, followed by restriction with
	, , ,	Ndel and EcoRI
		b) ligation of the digested PCR product into pXCHYC-2 cut with Ndel and EcoRI
pJK86	pXCHYC-2 carrying gspG	a) amplification of gspS from genomic DNA using primers CC0176-Ndel-for/CC0176-
	(CCNA 00175)	EcoRI-rev, followed by restriction with Ndel and EcoRI
	(co <u>-</u> co)	b) ligation of the digested PCR product into pXCHYC-2 cut with Ndel and EcoRI
pJK101	pXCHYC-2 carrying pstS	a) amplification of <i>pstS</i> from genomic DNA using primers pstS-for/pstS-rev-EcoRI,
ps202	prioritio 2 dantying poto	followed by restriction with Ndel and EcoRI
		b) ligation of the digested PCR product into pXCHYC-2 cut with Ndel and EcoRI
pSS98	pSW32 carrying stpB	a) amplification of the <i>stpB</i> downstream sequence from genomic DNA using primers
p 33 30	downstream region	CC2476-1/-2, followed by restriction with BsrGI and Nhel
	downstream region	b) ligation into pSW32 cut with BsrGI and NheI
pSS109	pNTPS138-based plasmid for	a) isolation of <i>stpB</i> -mcherry from pSS98 by restriction with Ndel and Nhel, followed by
p33109		
	replacing native stpB with stpB-	blunting of the fragment with T4 DNA polymerase
-CC110	mcherry	b) ligation into pNPTS138 cut with EcoRV
pSS119	pXBlaMC-2 carrying stpB	a) isolation of <i>stpB</i> from pSW32 by restriction with Ndel and EcoRl
554.00	VDI 440 0	b) ligation into pXBlaMC-2 cut with Ndel and EcoRl
pSS120	pXBlaMC-2 carrying stpA	a) isolation of <i>stpA</i> from pSW35 by restriction with Ndel and EcoRI
		b) ligation into pXBlaMC-2 cut with Ndel and EcoRl
pSS123	pTCYC-2 carrying stpB	a) isolation of <i>stpB</i> from pSW32 by restriction with Ndel and EcoRI
		b) ligation into pTCYC-2 cut with Ndel and EcoRI
pSS142	pVCHYC-1 carrying stpB	a) isolation of stpB from pSW32 by restriction with Ndel and EcoRl
		b) ligation into pVCHYC-1 cut with Ndel and EcoRI
pSS187	pTCYC-2-based plasmid carrying	a) in-vitro assembly of a phosphorylated His ₁₀ -linker from AM_299f/AM_300r
	stpB-His	b) ligation into pSS123 cut with EcoRI
pSS202	pXGFPC-2 carrying stpD	a) amplification of stpD from genomic DNA using primers CCNA_2271-for/-rev, followed
		by restriction with Ndel and Sacl
		b) ligation of the digested PCR product into pXGFPC-2 cut with Ndel and Sacl
pSS204	pXCHYC-2 carrying stpC	a) amplification of stpC from genomic DNA using primers CCNA_02560-for/-rev, followed
•		by restriction with Ndel and Sacl
		b) ligation of the digested PCR product into pXCHYC-2 cut with Ndel and Sacl
pSS205	pGFPC-1 carrying stpD	a) isolation of stpD from pSS202 by restriction with Ndel and EcoRI
	, , , , , , , , , , , , , , , , , , , ,	b) ligation into pGFPC-1 cut with Ndel and EcoRI
pSS206	pTCYC-2-based plasmid carrying	a) isolation of <i>stpD</i> from pSS202 by restriction with Ndel and EcoRI
,	stpD-His	b) ligation into pSS187 cut with Ndel and EcoRI
pSS208	pNTPS138-based plasmid for	a) amplification of the <i>stpD</i> 5' region from genomic DNA using primers CCNA_02271-3/-4
p 00 200	constructing an in-frame	b) amplification of the <i>stpD</i> 3' region from genomic DNA using primers CCNA_02271-5/-6
	deletion in stpD	c) overlap extension PCR using both PCR products and primers CCNA_02271-3/-6,
	deletion in stpb	followed by restriction with HindIII and EcoRI
		· · · · · · · · · · · · · · · · · · ·
~cc200	nNTDC120 based plasmid for	c) ligation of the final PCR fragment into HindIII/EcoRI-cut pNPTS138
pSS209	pNTPS138-based plasmid for	a) amplification of the stpC 5' region from genomic DNA using primers CCNA_02560-3/-4
	constructing an in-frame	b) amplification of the <i>stpC</i> 3' region from genomic DNA using primers CCNA_02560-5/-6
	deletion in <i>stpC</i>	c) overlap extension PCR using both PCR products and primers CCNA_02560-3/-6,
		followed by restriction with HindIII and EcoRI
		c) ligation of the final PCR fragment into HindIII/EcoRI-cut pNPTS138
pSS210	pTCYC-2-based plasmid carrying	a) isolation of <i>stpC</i> from pSS204 by restriction with Ndel and EcoRI
	stpC-His	b) ligation into pSS187 cut with Ndel and EcoRI
pSS220	pXBlaMC-2 carrying stpC	a) isolation of stpC from pSS204 by restriction with Ndel and EcoRI
		b) ligation into pXBlaMC-2 cut with Ndel and EcoRI
pSS221	pXBlaMC-2 carrying stpD	a) isolation of stpD from pSS202 by restriction with NdeI and EcoRI
		b) ligation into pXBlaMC-2 cut with Ndel and EcoRI
pSS227	pXCHYC-2 carrying malA	a) amplification of malA from genomic DNA using primers CC2287-1/-2, followed by
	(CCNA_02370)	restriction with Ndel and Sacl
	. – ,	b) ligation of the digested PCR product into pXCHYC-2 cut with Ndel and Sacl
pSS229	pCHYC-2 carrying Astex_0987	a) amplification of <i>Astex 0987</i> from genomic DNA using primers Astex 0987-2f/-3r,
	,	followed by restriction with Ndel and EcoRI
		b) ligation of the digested PCR product into pCHYC-2 cut with Ndel and EcoRI
pSS309	pCHYC-2 carrying stpB	a) isolation of <i>stpB</i> from pSW32 by restriction with Ndel and EcoRI
P-0-0-0-0	point 2 can jing stpb	b) ligation into pXCHYC-2 cut with Ndel and EcoRI
pSS310	pCHYC-2 carrying stpC	a) isolation of <i>stpC</i> from pSS204 by restriction with Ndel and EcoRI
POOTE	perre-z carrying stpc	a, isolation of size from psszo+ by restriction with Naci alla ECON

Table S3. Plasmids Generated in This Study (continued)

Name	Description	Construction
pSW32	pXCHYC-2 carrying stpB	a) amplification of the <i>stpB</i> gene using primers CC2476-for/CC2476-rev, followed by restriction with Ndel and EcoRI
		b) ligation of the digested PCR products into pXCHYC-2 cut with Ndel and EcoRI
pSW35	pXCHYC-2 carrying stpA	 a) amplification of the stpA gene using primers CC2477-uni/CC2477-rev, followed by restriction with Ndel and Sacl
		b) ligation of the digested PCR products into pXCHYC-2 cut with Ndel and SacRI
pSW51	pNTPS138-based plasmid for constructing an in-frame	a) amplification of the 5' region of <i>stpA</i> from genomic DNA using primers dCC2477-A-for/dCC2477-B-rev, followed by restriction with BamHI and EcoRI
	deletion in stpA	b) amplification of the 3' region of <i>stpA</i> from genomic DNA using primers dCC2477-C-for/dCC2477-D-rev, followed by restriction with EcoRI and NheI
		c) ligation of both fragments into BamHI/NheI-cut pNPTS138
pSW52	pNTPS138-based plasmid for	a) amplification of the 5' region of stpB from genomic DNA using primers dCC2476-A-
	constructing an in-frame	for/dCC2476-B-rev, followed by restriction with BamHI and EcoRI
	deletion in <i>stpB</i>	 b) amplification of the 3' region of stpB from genomic DNA using primers dCC2476-C- for/dCC2476-D-rev, followed by restriction with EcoRI and NheI
		c) ligation of both fragments into BamHI/NheI-cut pNPTS138
pSW53	pNTPS138-based plasmid for	a) amplification of the 5' region of stpAB from genomic DNA using primers d2476d2477-
	constructing an in-frame	A-for/d2476d2477-B-rev, followed by restriction with BamHI and EcoRI
	deletion in stpAB	b) amplification of the 3' region of <i>stpB</i> from genomic DNA using primers d2476d2477-C-for/ d2476d2477-D-rev, followed by restriction with EcoRI and NheI
		c) ligation of both fragments into BamHI/NheI-cut pNPTS138
pSW64 (P _{xyl} -stpAB)	pBXMCS-2 carrying stpAB	 a) amplification of stpAB from genomic DNA using primers CC2477-uni/CC2476-rev2St, followed by restriction with Ndel and EcoRI
(I xyl-3tpAD)		b) ligation of the digested PCR product into pBXMCS-2 cut with Ndel and EcoRI
pSW67	pXCHYC-2 carrying elpS	a) amplification of <i>elpS</i> from genomic DNA using primers CC0170-C-for/CC0170-C-rev,
ρσίνον	(CCNA_00169)	followed by restriction with Ndel and EcoRI
		b) ligation of the digested PCR product into pXCHYC-2 cut with Ndel and EcoRI
pXBlaMC-2	Plasmid for integrating genes encoding C-terminal TEM-1 β-	a) amplification of the TEM-1 β-lactamase gene from pJAMY31 using primers blaM-C for/blaM-C rev, followed by restriction with Agel and Nhel
	lactamase fusions at the chromosomal xylX locus, Kan ^R	b) ligaton of the digested PCR product into pXGFPC-2 cut with Agel and Nhel

Table S4. Oligonucleotides Used in This Study, Related to Experimental Procedures

Note the different ORF numbers: CC2477 = CCNA_02562, CC2476 = CCNA_02561, CC0170 = CCNA_00169, CC0176 = CCNA_00175, CC2287=CCNA_02370.

Oligonucleotide	Sequence
AM 299f	AATTCCCATCACCACCATCACCACCACCACTAGT
AM 300r	GGGTAGTGGTGGTAGTGGTGGTGGTGATCATTAA
 Astex_0987-2f	ATTAATTCATATGTCGGCCCAGACAGAAACCCGCTATG
	ATGAATTCGATTTCGAGGCGACCAGCAGACGCGG
blaM-C_for	TTTTACCGGTCGGCCACCATGCACCCAGAAACGCTGGTGAAAGTAAAAG
blaM-C_rev	TTTTGCTAGCTTACCAATGCTTAATCAGTGAGGCACCTATC
CCNA_02271-for	TTAATTCATATGCGTCATCAAATGGCGCGTCGCG
CCNA_02271-rev	TAGAGCTCCGTGATGGCCGGCGGCGCGTGCTTG
CCNA_02271-3	ATGAATTCGAACCAGACGTGAAGCGGCGCAG
CCNA_02271-4	CTTGTCCTTCACGCGACGCCCATTTGATGAC
CCNA_02271-5	CGTCGCGTGAAGGACAAGCACGCCGCCGCC
CCNA_02271-6	TAAAGCTTCGGCGGTTTCCAGGTGATCGAGCA
CCNA_02560-for	TTAATTCATATGAGCAAGTCTGTTCGTAGCCGGCTGG
CCNA_02560-rev	TAGAGCTCCGCATCCGACGAGGCCCGCCCGACG
CCNA_02560-3	ATGAATTCGAGTCAAGGCGACCGGCACGATCATG
CCNA_02560-4	GAAATTACGGGAAACGGCCAGCCGGCTACGAAC
CCNA_02560-5	GCCGTTTCCCGTAATTTCGTCGGCGCGGGCCTC
CCNA_02560-6	TAAAGCTTCTACGAGCAGGCGACGAAGCACCG
CC0170-C-for	AATTCATATGAAGCTGTATAGAAACCTAATCCTCATGAGCTGCG
CC0170-C-rev	AATTGAATTCTCGTTGGTCGGCAGCGACGTG
CC0176-Ndel-for	ATATCATATGTCGACCGCAAACGCTGAAACGAAAC
CC0176-EcoRI-rev	ATATGAATTCTCGCTCCAGTTGCCAATGTCGG
CC2287-3	GCCAATGATCGCGTGATCGGCG
CC2287-4	CATCCCGCAGGAAGCCATCATCG
CC2476-for	TTAACATATGCGCCGCCTCAGCCGCCTGCTGG
CC2476-rev	TAGAATTCGATCGAGGAGCTCCCCCTTGTTGAGGC
CC2477-uni	AAAACATATGCGCGAGGCCGGGGACGCAATTGC
CC2477-rev	TAGAGCTCCGTAATTCCCTTCGTTATACGGACGCCCGC
DCC2476-A-for	AATTGGATCCTCGGCCGTCCGAACACC
DCC2476-B-rev	AATTGAATTCGGCCCAAAGCGCCAGC
DCC2476-C-for	AATTGAATTCCGGTCCGCCCC
DCC2476-D-rev	AATTGCTAGCTTGAAGCAGCGGTTGTCGCC
CC2476-rev2St	AATTGAATTCTCATCGAGGAGCTCCCCCTTGT
CC2476-1	TATGTACAAGTAAGCAAGTCTGTTCGTAGCCGGCTGGC
CC2476-2	TATAGCTAGCCGACCAGCACCGTCCTCAGCATCC
DCC2477-B-rev	TTAAGAATTCGCGAAGGCGCAATT
DCC2477-C-for	TTAAGAATTCGATCGGGGCGGCGT
DCC2477-D-for	TTAAGCTAGCACGCCGGGCTGGATCTTG
D2476d4277-A-for	TTAAGGATCCGGAGCTGGCCAATACGGC
D2476d4277-B-rev	TTAAGAATTCGCGAAGGCGCGCAATTG
D2476d4277-C-for	TTAAGAATTCGTTCCCGCGCCTCAACAAG
D2476d4277-D-for	TTAAGCTAGCGGGGGTGAAGATGCCGAG
EK225	TACTCATATGAACAAGCTCATCGGCGC
EK226	TACTGAATTCGCGTTCTTCGGCGCCGGCATCGG
pstS-for	ATATACATATGAACAAGCTCATCGGCGCGGTCGCC
pstS-rev-EcoRI	ATATGAATTCGCGTTCTTCGGCGCCCGGCATC

SUPPLEMENTAL REFERENCES

Bowman, G.R., Comolli, L.R., Zhu, J., Eckart, M., Koenig, M., Downing, K.H., Moerner, W.E., Earnest, T., and Shapiro, L. (2008). A polymeric protein anchors the chromosomal origin/ParB complex at a bacterial cell pole. Cell *134*, 945-955.

Evinger, M. and Agabian, N. (1977) Envelope-associated nucleoid from *Caulobacter crescentus* stalked and swarmer cells. J Bacteriol *132*, 294-301.

Ireland, M.M., Karty, J.A., Quardokus, E.M., Reilly, J.P., and Brun, Y.V. (2002). Proteomic analysis of the Caulobacter crescentus stalk indicates competence for nutrient uptake. Mol Microbiol 45, 1029-1041.

Judd, E.M., Comolli, L.R., Chen, J.C., Downing, K.H., Moerner, W.E., and McAdams, H.H. (2005). Distinct constrictive processes, separated in time and space, divide caulobacter inner and outer membranes. J Bacteriol *187*, 6874-6882.

Pierce, D.L., O'Donnol, D.S., Allen, R.C., Javens, J.W., Quardokus, E.M., and Brun, Y.V. (2006) Mutations in DivL and CckA rescue a *divJ* null mutant of *Caulobacter crescentus* by reducing the activity of CtrA. J Bacteriol *188*, 2473-2482

Poindexter, J.S. (1964). Biological Properties and Classification of the *Caulobacter* Group. Bacteriol Rev 28, 231-295.

Thanbichler, M., Iniesta, A.A., and Shapiro, L. (2007). A comprehensive set of plasmids for vanillate- and xylose-inducible gene expression in *Caulobacter crescentus*. Nucleic Acids Res *35*, e137.

Wagner. J.K., Setayeshgar, S., Sharon, L.A., Reilly, J.P., and Brun, Y.V. (2006) A nutrient uptake role for bacterial cell envelope extensions. Proc Natl Acad Sci USA *103*, 11772-11777.

Wang, Y., Jones, B.D., and Brun, Y.V. (2001). A set of *ftsZ* mutants blocked at different stages of cell division in *Caulobacter*. Mol Microbiol *40*, 347-360.

Werner, J.N., Chen, E.Y., Guberman, J.M., Zippilli, A.R., Irgon, J.J., and Gitai, Z. (2009) Quantitative genome-scale analysis of protein localization in an asymmetric bacterium. Proc Natl Acad Sci USA *106*, 7858-7863.

West, L., Yang, D., and Stephens, C. (2002) Use of the *Caulobacter crescentus* genome sequence to develop a method for systematic genetic mapping. J. Bacteriol. *184*: 2155-2166.