American Journal of Human Genetics, Volume 92

### **Supplemental Data**

## Mutations in SNRPE, which Encodes a Core Protein

#### of the Spliceosome, Cause Autosomal-Dominant

## **Hypotrichosis Simplex**

Sandra M. Pasternack, Melanie Refke, Elham Paknia, Hans Christian Hennies, Thomas Franz, Niklas Schäfer, Alan Fryer, Maurice van Steensel, Elizabeth Sweeney, Miquel Just, Clemens Grimm, Roland Kruse, Carlos Ferrándiz, Markus M. Nöthen, Utz Fischer, and Regina C. Betz



# Figure S1. Affected individuals from the Spanish hypotrichosis simplex family, lateral view.

(A) Index case (III:3) of the Spanish family. The picture was taken when she was 10 years old. She shows complete alopecia of the scalp and is devoid of eyebrows and eyelashes.

(B) Cousin of the index person at the age of 8 years. He has almost normal scalp hair, but sparse eyebrows and eyelashes.

(C) Cousin of the index person at the age of 10 years. His hair at the scalp is almost normal but he has no eyebrows and no eyelashes.

(D) Mother of the Spanish family. Her scalp hair is almost normal, but the eyebrows are sparse. Eyelashes are not visible.

(E) Father of the Spanish family. His scalp hair is sparse. Eyelashes and eyebrows are not present. Also, he does not have axillary hair.



#### Figure S2. Multipoint LOD-score analysis of the Spanish family.

The analysis was performed using the software LINKAGE version 5.21. LOD-scores are plotted against all SNP markers distributed across the genome. We observed a LOD-score of 2.35 at chromosome 1 which is indicated by an arrow.



#### Figure S3. Pedigree of the Spanish hypotrichosis family.

Marker haplotypes on chromosome 1 that are linked to the disease are indicated by red bars. Affected family members are shown in black, circles and squares denote females and males respectively. Microsatellite markers are given on the left, and the location of *SNRPE* is indicated by an arrow.



#### Figure S4. *Ncol* digestion of *SNRPE* PCR products of family 1.

The c.1A>G mutation identified in family 1 from Spain eliminates an *Ncol* restriction site (CC/ATGG). Therefore, an *Ncol* digestion of PCR products was performed with individuals from family 1 to verify the presence of the c.1A>G mutation in the affected individuals.



#### Figure S5. *Ncol* digestion of *SNRPE* PCR products of family 2.

Segregation of the c.1A>G mutation was tested by *Ncol* digestion in family 2 from Great Britain. The mutation was identified in the affected girl, but not in her parents, indicating a *de novo* mutation.



#### Figure S6. Confirmation of paternity in the British family.

We confirmed paternity in the British family by analysing 5 microsatellite markers around *SNRPE* (D1S2810, D1S2816, D1S249, D1S1726 and D1S510). The affected family member is shown in black, circles and squares denote females and males respectively. Microsatellite markers are given on the left.



#### Figure S7. Expression analysis of genes encoding different SM core proteins.

We isolated RNA from plucked human hair follicle cells of the scalp and eyebrows, skin biopsies and lymphocytes of control individuals by use of the RNeasy Micro Kit (Qiagen, Hilden, Germany). This was followed by a reverse transcriptase PCR with random hexamers. The obtained cDNA was used as template for end-point PCR using the gene specific primers given in Table S3. Shown is the expression of the genes *SNRPB*, *SNRPD1*, *SNRPD2*, *SNRPD3*, *SNRPE*, *SNRPF* and *SNRPG* in (A) hair follicle cells, (B) skin, (C) evebrow cells, and (D) immortalized lymphocytes of healthy controls. The seven proteins encoded by these genes constitute the Sm core of U1, U2, U4, and U5 snRNPs.



Figure S8. SNRPE immunoreactivity in human scalp skin.

SNRPE immunoreactivity was investigated in biopsies of human scalp skin that had been fixed over night in 4 % formaldehyde in Bouin solution and embedded in paraffin. Rabbit polyclonal antibody against SNRPE (20407-1-AP, ProteinTech, Chicago, USA) was used at a dilution of 1:50. Cy3-conjugated sheep anti rabbit IgG F(ab)2 from Sigma (cat. No. C-2306) was used at a dilution of 1:800. Reference size bar is given in A, C, and E. A, C, and E show SNRPE immunoreactivity. B, D, and F show the same sections as in A, C, and E, respectively, using differential interference microscopy (DIC) (Noma, Nomarski optics). Epi, epidermis; D, dermis; Co, hair shaft cortex; IRS, inner root sheath; ORS, outer root sheath; M, matrix; DP, dermal papilla.



#### Figure S9. Immunohistochemical analyis of SNRPE in murine skin.

SNRPE immunoreactivity was investigated in dorsal skin biopsies from 9 day old C57BL/6J mice that had been fixed over night in 4 % formaldehyde in PBS and embedded in paraffin. Rabbit polyclonal antibody against SNRPE (20407-1-AP, ProteinTech, Chicago, USA) was used at a dilution of 1:50. Cy3-conjugated sheep anti rabbit IgG F(ab)2 from Sigma (cat. No. C-2306) was used at a dilution of 1:800. A, B, and C SNRPE immunoreactivity, D, E, and F DAPI nuclear stain.

DC, dermal cells; PC, pilary canal; Epi, epidermis; SebG, sebaceous gland; M in E, medulla; C, cortex of hair shaft; IRS, inner root sheath; ORS, outer root sheath; M in F, matrix; DP, dermal papilla.

## Sm motif 1

#### p.Gly45Ser

|        |                | <u>*</u>                            |         |
|--------|----------------|-------------------------------------|---------|
| SNRPB  | YRMRCILQDGRIFI | <b>G</b> TFKAFDKHMNLILCDCDEFR       | KIKPKNS |
| SNRPD1 | ETVTIELKNGTQVH | GTITGVDVSMNTHLKAVKMTL               | KNREPVQ |
| SNRPD2 | TQVLINCRNNKKLI | GRVKAFDRHCNMVLENVKEMW               | TEVPKSG |
| SNRPD3 | HIVTCETNTGEVYF | GKLIEAEDNMNCQMSNITVTY               | RDGRVAQ |
| SNRPE  | IQVWLYEQVNMRIE | G <mark>CIIGFDEYMNLVLDDAEEIH</mark> | SKTKSRK |
| SNRPF  | KPVMVKLKWGMEYK | GYLVSVDGYMNMQLANTEEYI               | DGALSGH |
| SNRPG  | KKLSLKLNGGRHVQ | GILRGFDPFMNLVIDECVEMA               | TSGQQNN |

#### Figure S10. Bioinformatic analysis of different SNRP proteins.

The analysis revealed, that the Gly45 in the Sm motif 1 residue (boxed) is conserved in all SNRPs, pointing to its functional importance.



# Figure S11. Partial amino acid sequence of the human SNRPE protein in comparison with orthologs from other species.

There is a high homology of Sm motif 1 and Sm motif 2. The Gly45 residue in Sm motif 1 is conserved from human to drosophila. Species abbreviations are as follows: Hs, *Homo sapiens*; Mm, *Mus musculus*; Gg, *Gallus gallus*; Pt, *Pan troglodytes*; Rn, *Rattus norvegicus;* Bt, *Bos taurus*, Xt *Xenopus tropicalis*. Dr, *Danio rerio*, Dm, *Drosophila melanogaster.* 



#### Figure S12. Protein modelling of mutant SNRPE p.Gly45Ser.

The substitution disrupts the hydrophobic core of SNRPE and produces a clash with Leu58. However, it does not disrupt core formation with the other SNRPs, like SNRPF.



# Figure S13. Comparison of the presence of full-length and truncated SNRPE in cell pellet versus soluble fraction.

Western Blot analyses were performed with cell pellets and soluble fraction of SNRPE wild type and p.Met1?. Note the higher presence of the truncated form in the pellet fraction.



Figure S14. Splicing analyses of cells expressing SNRPE wild type or mutant constructs. We cotransfected HEK293T cells with SNRPE wild type/p.Met1?/p.Gly45Ser and different minigenes (Fu at al., 2011; CAPN3, HEXA, ACTA1, LAMA2, GH1. COL1A2, LPL, FECH and EYA1). Cells were harvested 30 hours post transfection and RNA was isolated with the RNeasy Micro Kit (Qiagen, Hilden, Germany). cDNA synthesis was performed with 1µg RNA using the Protoscript First Stand cDNA Synthesis Kit (NEB, Ipswich, MA) and random hexamers. After that, we performed nonquantitative end-point PCR with T7 and BGH primers. We observed no different splicing patterns between cells transfected with SNRPE wild type, p.Met1? or p.Gly45Ser.



## Figure S15. Analysis of mRNA splicing of genes, that are involved in monogenic isolated alopecias in humans.

We isolated RNA from immortalized lymphocytes of a control and individual II:7 from family 1 and also individual II:1 from family 2 by use of the RNeasy Micro Kit (Qiagen, Hilden, Germany). Both patients carry the *SNRPE* mutation c.1A>G (p.Met1?) in a heterozygous state. We performed cDNA sythesis with random hexamers and after that we used these cDNAs as template for non-quantitative end-point PCRs with primers for genes (*LIPH, VDR, RPL21* and *LPAR6;* primer sequences are available upon request), that have been shown to be involved in monogenic isolated alopecias in humans. We could not detect different splicing products in the affected individuals from family 1 and 2 and the control, indicating that the *SNRPE* mutation does not lead to aberrant splicing of the above mentioned genes in patients.

| Excluded locus | Respective gene                        |
|----------------|----------------------------------------|
| 6p21           | Corneodesmosin (CDSN)                  |
| 8p21           | Hairless ( <i>HR</i> )                 |
| 12q13          | Vitamin D receptor (VDR)               |
| 16q22          | Cadherin 3 (CDH3)                      |
| 12q13          | Keratin gene cluster                   |
| 17q11          | Winged-helix transcription factor nude |
|                | (WHN)                                  |
| 17q21          | Keratin gene cluster                   |

#### Table S1. Excluded candidate loci in family 1 originating from Spain.

Prior to a genome-wide linkage analysis, we excluded a number of candidate loci that were known to be involved in hair loss by that time.

| Table S2.  | Exclusion   | of  | positional | candidate | genes | in | chromosomal | region |
|------------|-------------|-----|------------|-----------|-------|----|-------------|--------|
| 1q31.3-q41 | by direct s | equ | Jencing.   |           |       |    |             |        |

| Symbol   | Full name                                             |
|----------|-------------------------------------------------------|
| ZBTB41   | zinc finger and BTB domain containing 41              |
| LHX9     | LIM homeobox 9                                        |
| NEK7     | NIMA-related kinase 7                                 |
| ATP6V1G3 | ATPase, H+ transporting, lysosomal, V1 subunit        |
| PTPRC    | protein tyrosine phosphatase, receptor type, C        |
| NR5A2    | nuclear receptor subfamily 5, group A, member 2       |
| ZNF281   | zinc finger protein 281                               |
| DDX59    | DEAD (Asp-Glu-Ala-Asp) box polypeptide 59             |
| GPR25    | G protein-coupled receptor 25                         |
| ТМЕМ9    | transmembrane protein 9                               |
| PKP1     | plakophilin 1 isoform 1b                              |
| LAD1     | ladinin 1                                             |
| CSRP1    | cysteine and glycine-rich protein 1 isoform 1         |
| BC030568 | Homo sapiens ribosomal protein S10 pseudogene 7, mRNA |
| LMOD1    | leiomodin 1 (smooth muscle)                           |
| TIMM17A  | translocase of inner mitochondrial membrane 17        |
| RNPEP    | arginyl aminopeptidase (aminopeptidase B)             |
| ELF3     | E74-like factor 3 (ets domain transcription)          |
| GPR37L1  | G-protein coupled receptor 37 like 1                  |
| ARL8A    | ADP-ribosylation factor-like 8A                       |
| PTPN7    | protein tyrosine phosphatase, non-receptor type       |
| RABIF    | RAB-interacting factor                                |
| ADIPOR1  | adiponectin receptor 1                                |
| PPFIA4   | protein tyrosine phosphatase, receptor type, f        |
| MYOG     | myogenin                                              |
| ADORA1   | adenosine A1 receptor                                 |
| BTG2     | B-cell translocation gene 2                           |
| FMOD     | fibromodulin precursor                                |
| PRELP    | proline arginine-rich end leucine-rich repeat         |
| OPTC     | opticin precursor                                     |
| ATP2B4   | plasma membrane calcium ATPase 4 isoform 4a           |
| LAX1     | lymphocyte transmembrane adaptor 1 isoform a          |
| SOX13    | SRY-box 13                                            |
| PPP1R15B | protein phosphatase 1, regulatory subunit 15B         |

| CNTN2    | contactin 2 precursor                                               |
|----------|---------------------------------------------------------------------|
| TMEM81   | transmembrane protein 81                                            |
| RBBP5    | retinoblastoma binding protein 5                                    |
| DSTYK    | receptor interacting protein kinase 5 isoform 1                     |
| TMCC2    | transmembrane and coiled-coil domain family 2                       |
| LEMD1    | LEM domain-containing protein 1 (LEMP-1) (Cancer/testis antigen 50) |
|          | (CT50)                                                              |
| РСТКЗ    | PCTAIRE protein kinase 3 isoform a                                  |
| ELK4     | ELK4 protein isoform a                                              |
| SLC45A3  | prostein                                                            |
| AVPR1B   | arginine vasopressin receptor 1B                                    |
| IKBKE    | IKK-related kinase epsilon                                          |
| DYRK3    | dual-specificity tyrosine-(Y)-phosphorylation                       |
| МАРКАРК2 | mitogen-activated protein kinase-activated                          |
| IL10     | interleukin 10 precursor                                            |
| IL19     | interleukin 19 isoform 1 precursor                                  |
| IL20     | interleukin 20 precursor                                            |
| IL24     | interleukin 24 isoform 1 precursor                                  |
| C1orf116 | specifically androgen-regulated protein isoform                     |
| LAMB3    | laminin, beta 3 precursor                                           |
| IRF6     | interferon regulatory factor 6                                      |
| TRAF5    | TNF receptor-associated factor 5                                    |
| SLC30A1  | solute carrier family 30 (zinc transporter)                         |
| NEK2     | NIMA-related kinase 2                                               |
| LPGAT1   | lysophosphatidylglycerol acyltransferase 1                          |
| PPP2R5A  | protein phosphatase 2, regulatory subunit B                         |
| ATF3     | activating transcription factor 3 isoform 1                         |

Given is the approved symbol in the left column and the full name in the right column.

# Table S3. Primers for amplification, sequencing, expression analysis and cloning of *SNRPE* and expression analysis of the other Sm proteins (SNRPB, SNRPD1, SNRPD2, SNRPD3, SNRPF, SNRPG).

| Primer denomination                                      | Sequence                                                 |  |  |  |
|----------------------------------------------------------|----------------------------------------------------------|--|--|--|
| Primer for sequencing of the coding region of SNRPE      |                                                          |  |  |  |
| SNRPE_1F                                                 | 5'-ACGTGACTTCATGGCTAGAGG-3'                              |  |  |  |
| SNRPE_2R                                                 | 5'-GAACACAGCGATCGCTCAGGT-3'                              |  |  |  |
| SNRPE_3F                                                 | 5'-TGCAGGAGATAAGCCCTTGGT-3'                              |  |  |  |
| SNRPE_3R                                                 | 5'-AAGGCTAAACAGCAGCACCTG-3'                              |  |  |  |
| SNRPE_3Fseq                                              | 5'-TCGGCCTCCGAAAGTGCTGG-3'                               |  |  |  |
| SNRPE_4F                                                 | 5'-GGTGGGGCTTGAGAAGAGTG-3'                               |  |  |  |
| SNRPE_4R                                                 | 5'-GGAGAAGCCAAAATGGAGTGT-3'                              |  |  |  |
| SNRPE_5F                                                 | 5'-CCAGTGAACACCAGTGTTCC-3'                               |  |  |  |
| SNRPE_5R                                                 | 5'-GCAACGAATGGTGTTACTGTG-3'                              |  |  |  |
| SNRPE_5Fseq                                              | 5'-AAATATTGTTCAAAAACTGG-3'                               |  |  |  |
| Primer for expression                                    | n analysis of SNRPE and genes encoding other Sm proteins |  |  |  |
| SNRPE_1F2                                                | 5'-GTGGCCAGGGTCAGAAAGTGC-3'                              |  |  |  |
| SNRPE_5R2                                                | 5'-TTTGTAGCAGAGTAATATTATCTCC-3'                          |  |  |  |
| SNRPB_ExprF                                              | 5'-TCAATGACAGTAGAGGGACC-3'                               |  |  |  |
| SNRPB_ExprR                                              | 5'-ATACTGGCTGTGGCAGCAGC-3'                               |  |  |  |
| SNRPD1_ExprF                                             | 5'-GAAGAACGGAACACAGGTCC-3'                               |  |  |  |
| SNRPD1_ExprR                                             | 5'-CTCTTCCTGCAACAGCTTCC-3'                               |  |  |  |
| SNRPD2_ExprF                                             | 5'-ATGAGCCTCCTCAACAAGCC-3'                               |  |  |  |
| SNRPD2_ExprR                                             | 5'-TTCCGCAGGACCACGATGAC-3'                               |  |  |  |
| SNRPD3_ExprF                                             | 5'-TGACATGTGAGACGAACACC-3'                               |  |  |  |
| SNRPD3_ExprR                                             | 5'-TCCACGTCCTCTTCCTCTTG-3'                               |  |  |  |
| SNRPF_ExprF                                              | 5'-AGTAGCCTGCAACATTCGGC-3'                               |  |  |  |
| SNRPF_ExprR                                              | 5'-CCCAGATGTCCAGACAAAGC-3'                               |  |  |  |
| SNRPG_ExprF                                              | 5'-AAGCTCACCCTCCCGAGTTG-3'                               |  |  |  |
| SNRPG_ExprR                                              | 5'-CACATTCATCTATCACAAGG-3'                               |  |  |  |
| Primer for cloning SNRPE wild type and mutant constructs |                                                          |  |  |  |
| Primer_WT/p.Gly45                                        | 5'-CG <u>AAGCTT</u> CCGCCGCCATGGCGTACCGTGGCCAGGGTCA-3'   |  |  |  |
| Ser_F                                                    |                                                          |  |  |  |
| Primer_p.Met1?_F                                         | 5'-CG <u>AAGCTT</u> CCGCCGCCGTGGCGTACCGTGGCCAGGGTCA-3'   |  |  |  |

L

| Site-directed muta- | 5'-GAATATGCGGATAGAA <b>A</b> GCTGTATCATTGGTTTTGATGAG-3' |
|---------------------|---------------------------------------------------------|
| genesis_p.Gly45Ser  |                                                         |
| _F                  |                                                         |
| Site-directed muta- | 5'-AACCAATGATACAGCTTTCTATCCGCATATTCACTTGCT-3'           |
| genesis_p.Gly45Ser  |                                                         |
| _R                  |                                                         |
| Primer_R            | 5'-GC <u>CTCGAG</u> TTGGAGACACTTTGTAGCAGAGTAATATTA-3'   |

The primer SNRPE\_3Fseq and SNRPE\_5Fseq were only used for sequencing reaction. For cloning of the *SNRPE* mutation c.1A>G (p.Met1?) and the wild type sequence, the R primer was combined with one of the two given F primers. To clone the c.133G>A mutation (p.Gly45Ser), we used the wild type construct as starting material and performed a site-directed mutagenesis with the respective mutagenesis primers. All constructs were cloned by use of the enzymes *HindIII* and *XhoI* (recognition sequences are underlined).