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Figure S1. A pilot membrane trafficking screen identifies and quantifies three 

major Golgi phenotypes. 

(A) A network of interactions of the 63 known regulators of membrane traffic tested in 

the pilot screen arranged in accordance with Cellular Component GO and literature 

review. Nodes with red names indicate genes that affect cell viability upon KD. (B) 

Heatmap of the phenotypic scores of the 63 membrane trafficking regulators. (C) 

Morphological signatures based on phenotypic scores reflect the extent of Golgi 

perturbation as highlighted by the completely diffused Golgi in Brefeldin A (BFA) 

treatment and a less extensively diffused Golgi in SNAP23 KD. Examples of extensively 

fragmented and condensed Golgi are reflected in nocodazole and latrunculin B 

treatments respectively. Bars: 30 µm. 
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Figure S2. Support Vector Machine training using reference cells accurately 

describes Golgi phenotypes, consistent with visual inspection. 

(A) Cells that were subjected to the listed drug (blue) and siRNA treatments were used 

to train the SVM to identify specific Golgi phenotypes in the three compartments. This 

list constitutes the “Reference morphological phenotypes” (Figure 1B and 2F). (B) 

Cellular validation of Golgi phenotypes by user compared to SVM. The percentage of 

cells for which the phenotype defined agrees between SVM and user (Blue), or between 

users (red) for each category “Complete”, “Moderate” and “Weak”. (C) Validation of 

predicted phenotypes at the well level. The percentage of wells for which each of the 

three Golgi phenotype defined agrees between user and SVM. (D) For each classifier, 

the 5 most discriminant image features were selected according to their z-scores to 

derive SVM functions that define phenotypic boundaries in this 5-dimensional space. 

Plots of unselected (E) and selected (F) raw image features of both control cells (blue) 

and cells that were predicted by the SVM with fragmented Golgi (red). Y axis indicates 

image feature scores. “BigobjectsSeg” and “SmallObjectsSeg” refer respectively to 

objects of roughly the size of a normal Golgi or large Golgi fragments and vesicles or 

small Golgi fragments  (G) The 5 selected image features of the selected reference 

images were combined to generate the SVM for diffuse, fragmented (shown here) and 

condensed PF classification. The output is binary (1=fragmented or 0=not fragmented). 

The plot represents the PF classification of a group of control cells and cells from the 

fragmented reference set, demonstrating that the PF is much better at describing 

cellular phenotype than any of the individual image features. The cells from the 
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reference set that are not classified as fragmented reflect the phenotypic heterogeneity 

of cell populations.  
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Figure S3. Phenotypic scores are reproducible across replicates and independent 

of cell number. 

(A) Scatter plots demonstrating reproducibility in the phenotypic scores between the two 

screen replicates. (B) Plots of total cell count versus phenotypic scores reveal absence 

of correlation between cell number and Golgi phenotype. (C) Plots comparing intensities 

of Golgi compartments with cell count show absence of correlation. (D) Genes that 

show a cis diffuse Golgi and secretion defects upon depletion show extensive 

colocalization between cis Golgi marker HPL and ER marker calreticulin. Images were 

acquired with 60x magnification. Scale bar: 10 µm. (E) Colocalization between the cis 

Golgi and ER markers was measured using Pearson’s correlation coefficient of the 

staining intensities of the two markers. Cells were analysed using Metaexpress 

Translocation-Enhanced analysis module. Values on graphs indicate the mean ± SEM. 

**p<0.0001, *p<0.05 by two-tailed unpaired t- test, relative to untransfected control cells. 
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Figure S4. Most of the primary hit phenotypes are reproducible using 

deconvoluted siRNAs and demonstrate enrichment in some signaling pathways. 

(A) Hit validation using deconvoluted siRNA pools. Golgi phenotypic scoring was 

performed with 4 individual duplex siRNAs from the pool for each of the 181 genes. For 

each Golgi phenotype, each set of four duplexes was ranked based on the number of 

duplexes that have a score above the threshold. A gene was validated if at least two 

unique siRNAs gave a score above the threshold. (B) Enrichment studies of hit genes 

based on biological pathway annotation in KEGG database. (C) Enlarged version of 

Figure 3C. 
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Figure S5. Actomyosin regulators ROCK1 and PAK1 exhibit antagonistic effects 

on Golgi structure. 

(A) Treatment of cells with 10µM of PAK inhibitor IPA3 recapitulated the fragmented 

Golgi phenotype in PAK1 depletion. ROCK1 depleted cells treated with IPA3 reverted 

the condensed Golgi phenotype to normal. (B) Quantification of the number of granules 

per cell of cells treated for 6 hours with different IPA3 concentrations. (C) Quantification 

of the number of granules per cell with (red bars) and without (blue bars) treatment of 

10µM IPA3 on siRNA depleted cells. Values on graphs indicate the mean ± SEM. 

**p<0.0001, *p<0.05 by two-tailed unpaired t-test, relative to non- targeting siRNA 

treated control cells.  
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Figure S6. Golgi fragmentation by depletion of DUSPs requires ERK1/2 activation.  

(A) Western blot analysis of phosphorylated and total ERK levels in the siRNA KD of 

DUSP2, 6 and 8. Phospho-ERK/total-ERK levels normalised to control cells were 

quantified using ImageJ software and indicated below the respective lanes. (B) 

Treatment of DUSP-depleted cells with 100 µM ERK1/2 inhibitor FR180204 for 6 hours 

rescues the fragmented Golgi phenotype. Scale bar: 10 µm. (C) Quantification of the 

number of granules per cell of cells with (red bars) and without (blue bars) drug 

treatments. Values on graphs indicate the mean ± SEM. **p<0.0001, *p<0.05 by two-

tailed unpaired t-test, relative to untreated control cells.  
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Figure S7. Condensed Golgi phenotype from MECOM depletion is due to JNK 

activation. 

(A) The condensed Golgi phenotype in MECOM depleted cells is rescued back to 

normal after treatment with 50 µM of JNK inhibitor SP600125 for 6 hours. (B) 

Quantification of the number of granules per cell with (red bars) and without (blue bars) 

drug treatment. Values on graphs indicate the mean ± SEM. **p<0.0001, *p<0.05 by 

two-tailed unpaired t-test, relative to untreated control cells.  
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Figure S8. Depletion of 111 Golgi organization regulators results in significant 

changes in secretion. 

Met-Luc secretion (log of luciferin signal per cell, normalized to that of transfection 

reagent-treated control (TR) wells) of (A) genes in the pilot screen and (B) the primary 

Golgi morphology hit genes. Control wells are indicated as in the legend. Some genes 

on the extremes are labeled. Dashed lines in (B) indicate the cutoff values for significant 

secretion changes. (C) Met-Luc secretion of the primary hit genes, grouped according to 

the 6 Golgi morphology groups, indicating no significant correlation between Golgi 

morphology and constitutive secretion of Met-Luc. Lines indicate the group mean. (D) 

Plot of the Met-Luc secretion values of the primary hit genes for the two replicate 

experiments. Data points are color-coded as in (B). 
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Figure S9. Depletion of genes that show cis diffuse Golgi exhibit ER to Golgi 

trafficking defects with VSVG. 

(A) ER-Golgi trafficking of VSVG-tsO45-mcherry is impaired upon depletion of most 

genes that display both cis diffuse Golgi and reduced Met-Luc secretion phenotypes.  

(B) VSVG appearance at the Golgi after 15 min was quantified by Pearson’s correlation 

coefficient of the staining intensities of the Golgi marker MannII-GFP and VSVG (red 

bars). Plots show correlation coefficients normalised to their respective controls at 0 min 

(blue bars). Cells were analysed using Metaexpress Translocation-Enhanced analysis 

module. Values on graphs indicate the mean ± SEM. **p<0.0001, *p<0.05 by two-tailed 

unpaired t-test, relative to untransfected control cells at 15 min. 
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Figure S10. Lectin signals are reproducible across replicates and generally 

independent of each other. 

(A) Plots of normalized lectin signals for replicate experiments with each lectin, with one 

replicate on the x-axis and another replicate on the y-axis. Pearson correlation 

coefficients are indicated below the lectin names. (B) Plots of pairwise comparisons 

between the normalized lectin signals for different lectins. Squares on the bottom left of 

the diagonal are plots of the primary hit genes (black). Squares on the top right of the 

diagonal contain the Pearson correlation coefficients between paired lectins. (C) 

Principal Component Analysis plot of the 8 lectin scores for each hit gene illustrates the 

strong perturbations in HPL staining and its independence from the other lectins. Genes 

are color coded according to the 6 Golgi morphology groups as indicated. The strongest 

HPL hits tend to have diffuse or fragmented phenotypes. Inset: Magnified view of the 

Eigen vectors of the lectins. 
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SUPPLEMENTAL EXPERIMENTAL PROCEDURES 

 
Automated image processing 

Cell segmentation and extraction of raw features 

The nuclei channel was used to segment cells (Figure 2A). Individual cells or cell 

clusters were first detected using the "à trous" wavelet transform. Cell clusters were 

separated by watershed segmentation in wavelet maps where seeds are initiated on 

local maxima (Figure 2B and C). Circular regions of 45 microns in radius centered on 

the nuclei were placed around each nucleus and defined cellular segmentation. To 

avoid overlapping areas between the circular regions, the regions were cropped 

appropriately. Since the Golgi falls within the region of segmentation, image features of 

the Golgi and nucleus within the boundaries of each cell were extracted. Image features 

that were extracted can be separated into two categories; the first category mainly 

describes intensities repartition and can be viewed as “generic” features from the field of 

computer vision while the second category is based on object segmentation and its 

derived features that are commonly used in quantification of membrane protein 

localization (Racine et al., 2007).  

The first category of image features were composed of intensity average; standard 

deviation; cumulated intensity; the first 35th Zernike moments; 13 Haralick coefficients 

(codes adapted from (Boland and Murphy, 2001)); 16 energies in the four wavelet maps 

after "à trous" wavelet decomposition; calculated on Gabor wavelet decomposition in 8 

angles and 8 scales: 8 average of energy over angles, 8 maximum energy over angles 

and 8 associated angles.  
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The second category of image features were derived from the segmentation of all bright 

objects within the cell region and they were composed of descriptors of object 

segmentation inside cell regions based on "à trous" wavelet decomposition. For each 

Golgi channel, two sets of segmentations were performed: segmentation of small 

objects (roughly corresponding to vesicular structures) and segmentation of bigger 

objects (corresponding to Golgi or Golgi fragment structures). Only the nuclei 

segmentation was obtained from the nuclei channel. To be independent of intensities, 

the thresholds are adapted to the intensities of the cells. The threshold value in a 

wavelet map is proportional to the standard deviation of pixels in the original image that 

are included in cell regions. Thus the threshold value is independent of the area 

covered by the cells in the field and is proportional to the cell intensity. 7 segmentations 

(1 for the nuclei and 2 from each Golgi channel) are obtained in total. These 7 

segmentations were described by the number of pixels in the segmentation; the 

perimeter; the number of objects; percentage of intensity inside the segmentation; the 

major axis, the minor axis, the angle, the ratio between the minor and the major of an 

ellipse; fitting is performed on the segmentation; the distance between the region center 

and the segmentation centroid; the average distance between region center and pixels 

of the segmentation. We found that image features in the second category were more 

stable to intensity changes in Golgi channels which, hence, led us to only use image 

features from the second category to describe the Golgi. Both categories were used to 

describe the nucleus. A total of 22 features for each of the three Golgi channel and 108 

features for the nuclei channel (174 image features in total) were selected to describe 

the Golgi and nucleus of each imaged cell (Figure 2D). 
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Cell filtering  

A number of cell filtering parameters were adhered. Cells with half nucleus in the image, 

cells present in a dense cluster, out-of-focus cells (based on nuclei channel), cells 

displaying the lowest 15% of intensities in each of the Golgi channels per well, and 

apoptotic and mitotic cells were rejected for further analysis (Figure 2E). A SVM was 

created to identify out-of-focus cells. Briefly, manual cell scoring of cells in 10 wells was 

performed to identify the image feature that is most indicative of out-of-focus pattern. 

Human visualization scored 2000 cells were in focus while 252 cells were out-of-focus. 

Based on the best z-score to separate the two subpopulations, 

'channel[1].Intensities.aTrousDirectional[1].max' image feature was selected for the 

SVM model. To generate the SVM for apoptotic and mitotic cells, cells with such 

characteristics were manually identified from 10 wells in 10 different siRNA plates and 

their nuclei image features were sent to the SVM for learning. The top 5 image features 

were selected according to their z-scores. We used the radial basis SVM (Fan and 

Chen, 2005) using the LibSVM implementation. The parameters ‘cost’ and ‘gamma’ are 

chosen in the interval 2-5 to 215 using a modified version of Python script ‘grid.py’ 

available on the LIBSVM website. The best parameters are ‘cost=211’ and ‘gamma=2-5’ 

and lead to an accuracy of 93.0% using a 5-fold cross-validation. The prediction of the 

classifier was applied to all plates of the screen. 
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SVM model for generation of phenotypic feature (PF) 

Three main classifiers were used to define known phenotypes of the Golgi: diffuse, 

fragmented and condensed, referred as svm(D), svm(F) and svm(C). (Figure 2F). A cell 

with a Golgi phenotype similar to control cells will not be assigned a phenotype. For 

each classifier, different authors visually selected treatments where a majority of cells 

were clearly attributed to the phenotype. For each “diffuse”, “fragmented” and 

“condensed” phenotype and each channel, a list of representative treatments were 

defined for each Golgi channel (Figure S2A). These were compared with untransfected 

control cells. The 5 most relevant features were selected according to their z-scores to 

separate the cells that show phenotype versus normal cells (Figure S2D). The three 

classifiers were calculated via SVM and linear kernel function using the LibLINEAR 

implementation (Fan et al., 2008). A linear kernel was chosen instead of radial kernel 

because linear kernels are more stable even if the accuracy is reduced. The linear 

kernel is more reliable for predicting the major trend of the PF and does not extrapolate 

the mapping in regions where there are very few cells. In the implementation of each PF 

SVM training, we chose the same number of cells for both classes (normal and cells 

with phenotypes) and we attributed a cost to the negative label twice bigger that the 

positive control one. This unbalancing of the two labels allows more stringency on the 

affected phenotype (condensed, diffuse or fragmented) than of the normal phenotype. 

The parameter ‘cost’ is chosen in the interval 2-5 to 215 using a modified version of 

Python script ‘grid.py’ available on the LIBSVM website. We chose the parameter 

‘cost=28’ because it maximizes the accuracy average of the 3 PFs. When a cell shows 

more than one affected phenotype (like diffuse and fragmented) only the strongest one 
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is retained by comparing the probability estimates proposed by LibLINEAR (-b option). 

Genes are represented by the percentage of cells displaying each of the 3 PFs in each 

of the 3 Golgi channels (Figure 2H). The high-content dataset containing the raw 

features and SVM phenotypic features on a single-cell level is deposited in the Dryad 

repository: http://dx.doi.org/10.5061/dryad.1m2p3. 

 

Montage visualisation 

We have developed a software dedicated to the visualization of the segmented cells in 

a montage grid of all four image channels (Figure 2E). This software includes many 

features for efficient validation of cellular results as different channels can be visualised 

separately and display colors can be customized.    

 

Validation of phenotypes from SVM prediction 

Cell-by-cell validation of Golgi phenotypes: Three users visually scored the golgi 

phenotypes (three compartments) of 300 cells into 4 categories: “Diffuse”, 

“Fragmented”, “Condensed”, “Normal”, independently of each other and of the SVM’s 

prediction. Cells were chosen from 10 wells that exhibit varying weak SVM-predicted 

phenotypes. The percentages of cells for which the phenotype predicted by the SVM is 

in agreement with the user’s classification and for which there was inter-user agreement 

were calculated and categorised as “Complete”, “Moderate” or “Weak” agreement. 

“Complete” agreement occurs when both the user and SVM/other user attributes the 

same phenotypic classification to a cell. “Moderate” agreement occurs when a user 

interprets a phenotype in the cells while the SVM/other user identifies it as “normal” or 
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vice versa. “Weak” agreement occurs when a user selects a phenotype other than the 

phenotype classified by the SVM/other user or vice versa. 

Validation at the well-level: Images from 120 wells were chosen randomly, among which 

20% were from untreated wells and 80% from siRNA-treated wells. Two users visually 

classified the general phenotype in each well in a blind manner. The percentage of wells 

where there was agreement between the user and SVM output was calculated and 

categorized as above. 

 
Validation of lectin specificities 
 
PNA and HPL: Peanut Agglutinin and Helix Pomatia lectin and are highly specific for O-

glycans, PNA recognizing terminal core 1 O-glycans (Swamy et al., 1991) and HPL 

terminal α-linked O-GalNAc. KD of C1GALT1, the Core 1 galactosyltransferase that 

generates the Gal-β1,3-GalNAc-α1-Ser/Thr (T antigen) structure that PNA recognizes, 

abolishes the already-low PNA staining while increasing HPL staining because of the 

increase in terminal O-GalNAc. ConA: Concanavalin A binds mainly α-D-mannosyl and 

α-D-glucosyl groups, having a high affinity for the N-glycan trimannosyl core, thus it 

tends to reveal high mannose N-glycans (Debray et al., 1981). To test its binding 

specificity, we knocked down MGAT1 (mannosyl α1,3-glycoprotein β1,2-N-

acetylglucosaminyltransferase) which transfers the first GlcNAc residue onto the 

mannosyl core of N-glycans and is thus essential for the conversion of high-mannose to 

hybrid and complex N-glycans. Its absence prevents further trimming of the 

oligomannose structure, promoting more high-mannose glycan structures, and its KD 

indeed increased ConA staining relative to a GFP KD control. LCA: Lens culinaris 

agglutinin-A has high affinity for Fuc-α1,6-GlcNAc-N-Asn containing N-glycans (Debray 
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et al., 1981). As a control, we knocked down FUT8 (fucosyl transferase 8) which 

catalyzes the addition of fucose in α1,6 linkage to the first, Asn-linked GlcNAc residue of 

N-glycans. Its absence prevents the formation of this core fucose structure and its KD 

indeed decreased LCA staining. PHA-L: Phaseolus vulgaris leucoagglutinin has 

specificity for tri- and tetra-antennary N-glycans, binding preferentially to GlcNAc in a 

β1,6 linkage with the trimannosyl core (Schwarz et al., 1996; Cummings and Kornfeld, 

1982). To impair N-glycan synthesis, we co-knocked down STT3A and STT3B, subunits 

of the oligosaccharyltransferase complex which initiates N-glycosylation by catalyzing 

the transfer of a lipid-linked high mannose oligosaccharide to an asparagine residue on 

nascent polypeptide chains, and the KD inhibits PHA-L binding. ECA: Erythrina 

cristagalli lectin has a preference for the disaccharide galactosyl-β1,4-N-

acetylglucosamine, therefore recognizing mostly extended complex N- and O-glycans 

that are not capped by a sialic acid (Kaladas et al., 1982). KD of SLC35A3 (Golgi UDP-

GlcNAc transporter) reduces the availability of UDP-GlcNAc substrate necessary for the 

addition of GlcNAc to extend both N- and O-glycans; KD of MGAT1 or C1GalT1 inhibits 

the extension of N-glycans or O-glycans, respectively, and thus Gal-β1,4-GlcNAc 

structures. Thus KD of either of the three genes all lead to a reduction in ECA staining. 

DSL: Datura stramonium lectin has a relatively broad specificity for poly-LacNAc-

extended N-and O-glycans as well as tri- and tetra-antennary N-glycans (Sun et al., 

2009; Crowley et al., 1984; Cummings and Kornfeld, 1984). Like PHA-L, co-KD of 

STT3A and STT3B decreases the initiation of N-glycosylation which hence inhibits DSL 

binding. MAL-II: Maackia amurensis lectin II binds preferentially to O-linked glycans 
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containing the trisaccharide Sia-α2,3-Gal-β1,3-GalNAc (Geisler and Jarvis, 2011). 

Sialidase treatment reduces MAL-II staining. 

 

Kinase inhibitor treatment 

All kinase inhibitors IPA3 (#3622), FR180204 (#3706) and SP600125 (#1496) were 

purchased from Tocris Bioscience and reconstituted in DMSO. 3 days after siRNA 

transfection, cells were treated with various concentrations of the inhibitors for 6 hours 

before paraformaldehyde fixation. 

 

Western blot analysis 

Wild type Hela cells were transfected with siRNAs in a 10cm dish for 3 days. On the 

third day, Cells were washed twice using ice-cold D-PBS before scraping in D-PBS. 

Cells were centrifuged at 300g for 5 min at 4°C and were lysed with ice-cold lysis buffer 

(50 mM Tris [pH 8.0, 4°C], 200 mM NaCl, 0.5% NP-40 alternative, 1 mM DTT, and 

complete protease inhibitor [Roche]) for 30 min with gradual agitation before clarification 

of samples by centrifugation at 10,000 g for 10 min at 4°C. Samples were diluted in lysis 

buffer with 4x SDS loading buffer and boiling at 95°C for 2 min. They were then 

resolved by SDS-PAGE electrophoresis using bis-tris NuPage gels as per 

manufacturer’s instructions (Invitrogen) and transferred to PVDF membranes which was 

blocked using 3% BSA dissolved in TBST (50 mM Tris [pH 8.0, 4°C], 150 mM NaCl, and 

0.1% Tween 20) for 2 h at room temperature. Membranes were washed to remove 

traces of BSA before incubation with antibodies as per manufacturer’s instructions. 

Membranes were washed five times with TBST before incubation with secondary HRP-
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conjugated antibodies (GE Healthcare). Membranes were further washed five times with 

TBST before ECL exposure. 

 

Secondary Met-Luc secretion screen 

HeLa cells were stably transfected to express secreted Metridia Luciferase (Clontech) 

using lentivirus transduction (HeLa Met-Luc). siRNA transfection of HeLa Met-Luc cells 

was performed as in the primary screen. After 3 days, the cells were washed once with 

PBS and fresh media was added to allow Met-Luc secretion. In some wells without 

siRNA KD, media containing either 10 µg/ml BFA, 6 µg/ml nocodazole, 1 µg/ml 

monensin, or 1 µg/ml latrunculin B was added instead. 25ul of supernatant per well was 

extracted after 4 hours, and the amount of secreted Met-Luc quantified using the 

Ready-to-Glow secreted luciferase reporter assay (Clontech). The raw signals were 

divided by the cell number (quantified by DAPI staining and imaging), logged, and then 

normalized to the mean of the control transfection reagent-treated (TR) wells. We used 

the standard deviation (SD) of TR wells as a measure of assay variation, and defined 

significant perturbation of Met-Luc secretion as a deviation of more than 3 SDs from the 

TR mean. This corresponded to normalized secretion values of about 0.95 and 1.05 

(see Figure S8). 

 

VSVG Secretion assay 

HeLa cells were stably transfected to express the temperature sensitive mutant of 

VSVG protein (VSVG-tsO45) tagged with mcherry at the C-terminus. siRNA transfection 

of HeLa-VSVG cells was performed as in the primary screen. Two days after siRNA 
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transfection, the cells were transferred to 40ºC and incubated for 16 hours to allow 

accumulation of VSVG in the ER. The cells were then incubated at 32ºC for 15 mins in 

the presence of 100 µg/ml of cycloheximide before fixation. 
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