Strain	Genotype	Source
[<i>pin</i> ⁻] (74-D694)	MATa, ade1-14UGA, ura3-52, leu2-3,112, trp1-289, his3-200, [psī][pin ⁻]	(1)
[<i>pin</i> ⁻] alpha	MATα, ade1-14UGA, ura3-52, leu2-3,112, trp1-289, his3-200, [psi ⁻][pin ⁻]	This study
[<i>PIN</i> ⁺] ^{low} (L1943)	MATa, ade1-14UGA, ura3-52, leu2-3,112, trp1-289, his3-200, [psi ⁻][PIN ⁺] ^{low}	(2)
$[PIN^+]^{low}$ deletions	MATa, ade1-14UGA, ura3-52, leu2-3,112, trp1-289, his3-200 [psī ⁻] deleted gene::HIS3	This study
$\begin{array}{l} \left[PIN^{+}\right]^{medium} \\ (L1945) \end{array}$	MATa, ade1-14UGA, ura3-52 leu2-3,112, trp1-289, his3-200 [psi ⁻][PIN ⁺] ^{medium}	(2)
[<i>PIN</i> ⁺] ^{medium} deletions	MATa, ade1-14UGA, ura3-52, leu2-3,112, trp1-289, his3-200 [psi ⁻] deleted gene::HIS3	This study
$\left[PIN^{+}\right]^{high}(L1749)$	MATa, ade1-14UGA, ura3-52 leu2-3,112, trp1-289, his3-200 [psi ⁻][PIN ⁺] ^{high}	(2)
$[PIN^+]^{high}$ deletions	MATa, ade1-14UGA, ura3-52, leu2-3,112, trp1-289, his3-200 [psī] deleted gene::HIS3	This study
HF7c	MATa his3-200 leu2-3 trp1-901 ura3-52 LYS::GAL1UAS- GAL1TATA-HIS3	Clontech

Table S1. S. cerevisiae strains used in this study

SUPPLEMENTAL REFERENCES

- Derkatch, I. L., Chernoff, Y. O., Kushnirov, V. V., Inge-Vechtomov, S. G., and Liebman, S. W. (1996) Genesis and variability of [*PSI*] prion factors in *Saccharomyces cerevisiae*. *Genetics* 144, 1375–1386
- 2. Bradley, M. E., Edskes, H. K., Hong, J. Y., Wickner, R. B., and Liebman, S. W. (2002) Interactions among prions and prion "strains" in yeast. *Proc. Natl. Acad. Sci. U.S.A.* **99**, 16392–16399

SUPPLEMENTAL FIGURE LEGENDS

Figure S1. Confirmation of $[PSI^+]$ induction in haploid deletion strains. Putative $[PSI^+]$ colonies (Figure 1) were streaked onto YEPD medium containing 3 mM Guanidine HCl and then restreaked onto CSM and CSM-ADE media to confirm effective prion curing. The presence of red pigment on CSM medium and the lack of growth on CSM-ADE medium suggest that $[PSI^+]$ was effectively cured, thereby signifying that the growth of induced colonies on CSM-ADE medium observed in Figure 1 was prion-related and suggesting that they were $[PSI^+]$.

Figure S2. Maintenance of chaperone gene deletion-induced changes in $[PIN^{\dagger}]$ variantdependent phenotypes. Chaperone deletion strains were mated with a wild-type $[psi][pin^{-}]$ strain, and the resulting diploids were analyzed for $[PSI^{\dagger}]$ induction efficiency (A) and frequency of multiple Rnq1-GFP foci in foci-containing cells (B). Error bars represent SEMs. Student's *t*-tests were done to compare quantification in deletion strains versus their parental wild-type strain. *P< 0.05, **P< 0.01, ***P< 0.001.

Figure S3. Confirmation of $[PSI^+]$ induction in haploid progeny. Putative $[PSI^+]$ colonies from wild-type (+) and mutant (-) haploid progeny (Figure 4) were streaked onto YEPD medium containing 3 mM Guanidine HCl and then restreaked onto CSM and CSM-ADE media to confirm effective prion curing. The presence of red pigment on CSM medium and the lack of growth on CSM-ADE medium suggest that $[PSI^+]$ was effectively cured, thereby signifying that the growth of induced colonies on CSM-ADE medium observed in Figure 3 was prion-related and suggesting that they were $[PSI^+]$.

Figure S4. Dominance of chaperone gene deletion-induced variants. Diploids were generated by mating chaperone deletion stains with a wild-type [psi] strains carrying the $[PIN^+]^{low}$ or $[PIN^+]^{medium}$ or $[PIN^+]^{high}$ variant. These diploids were analyzed for $[PSI^+]$ induction efficiency (A) and frequency of multiple Rnq1-GFP foci in foci-containing cells (B). Error bars represent SEMs. Student's *t*-tests were done to compare quantification in deletion strains versus their parental wild-type strain. *P< 0.05, **P< 0.01, ***P< 0.001.

Figure S5. Characterization of the $[PIN^+]$ state of the yeast two-hybrid strain, HF7c. *A*, Rnq1-GFP localizes in a diffuse manner without visible puncta in the HF7c strain. *B*, SDD-AGE of HA-Rnq1p purified from $[pin^-]$, $[PIN^+]^{low}$, $[PIN^+]^{medium}$, $[PIN^+]^{high}$ and HF7c strains. HA-Rnq1p isolated from the HF7c strain migrates similarly to HA-Rnq1p isolated from the $[pin^-]$ strain.